网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
多缸驱动液压机主动纠偏系统的模糊PID控制
英文标题:Fuzzy-PID control on active rectify deviation system for multi-cylinder driving hydraulic machine
作者:汪志能  刘衡  董楚峰 
单位:湖南科技大学 机电工程学院 
关键词:多缸  液压机  纠偏  模糊PID控制  数学模型 
分类号:
出版年,卷(期):页码:2022,47(3):137-141
摘要:

 多缸驱动液压机的纠偏性能直接决定锻件的加工质量,由于液压系统的时滞性、多缸间的耦合特性以及复杂偏心力矩等因素的影响,液压机的活动横梁极易出现偏转现象。针对这一难题,基于活动横梁的力平衡及力矩平衡,建立了多缸驱动液压机纠偏过程的数学模型,以液压缸伸出量为控制变量,以偏转角度为目标函数,建立了纠偏系统模糊控制规则表,形成了适应性较强的模糊PID控制方法。仿真结果表明:在模糊PID控制作用下,活动横梁在均变载荷下的稳态倾斜程度为0.2×10-3 rad,在脉动载荷下能在4.2 s内迅速恢复到平衡位置。该方法的响应速度快、稳态精度高,能实现高精度纠偏。

 The rectify deviation performance of multi-cylinder driving hydraulic machine directly determines the processing quality of forgings. Due to the influences of factors such as time log of hydraulic system, coupling characteristics between multiple cylinders and complex eccentric moments, the movable crossbeam of the hydraulic machine is prone to deflection. Therefore, considering the above problems, a mathematical model for the rectify deviation process of the multi-cylinder driving hydraulic machine was established according to the force balance and the moment balance of the movable beam, and taking the extension of hydraulic cylinder as the control variable and the deflection angle as the objective function, the fuzzy control rule table of the rectify deviation system was proposed, and the fuzzy PID control method with strong adaptability was formed. Simulation results show that under the action of fuzzy PID control, the steady-state inclination of the movable crossbeam is 0.2×10-3 rad under the uniform load, and it can quickly return to the equilibrium position within 4.2 s under the pulse load. In all, this method can achieve high-precision rectify deviation with fast response speed and high steady-state accuracy.

 

基金项目:
湖南科技大学博士科研启动基金资助项目(E52055);湖南省自然科学基金资助项目(2020JJ5184)
作者简介:
汪志能(1988-),男,博士,讲师 E-mail:873866634@qq.com
参考文献:

 [1]Li D, Fu X, Zuo Z, et al. Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems-A review[J]. Renewable and Sustainable Energy Reviews, 2019, 101:26-46.


 


[2]Li L, Huang H, Zhao F, et al. An energy-saving method by balancing the load of operations for hydraulic press[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2673-2683.


 


[3]袁海伦, 史宇麟,王康.万吨级锻造液压机工艺体系的建立[J].锻造与冲压,2021(1):77-80.


 


Yuan H L, Shi Y L, Wang K. The form of the forging process system for the over 10000-ton hydraulic forging press[J]. Forging & Metalforming, 2021(1):77-80.


 


[4]李栓柱, 李登攀,李灿.基于免疫神经网络的双缸液压机同步PID控制[J].机械工程师,2019(2):139-142.


 


Li S Z, Li D P, Li C. Double-cylinder hydraulic press synchronous PID control based on immune neutral network algorithm[J].Mechanical Engineer,2019(2):139-142.


 


[5]谢金晶, 黄明辉,陆新江.大型模锻压机驱动系统的分层控制策略[J].中南大学学报:自然科学版,2014,45(5):1463-1468.


 


Xie J J, Huang M H, Lu X J. Hierarchical control strategy of large forging equipment drive system[J]. Journal of Central South University :Science and Technology,2014,45(5):1463-1468.


 


[6]田英, 佘阳,王兴波.四柱式液压机双缸“串并联”同步控制结构研究[J].液压与气动,2021(1):20-26.


 


Tian Y, She Y, Wang X B. Series parallel synchronous control structure of four column hydraulic press[J].Chinese Hydraulics & Pneumatics,2021(1):20-26.


 


[7]李胜永. 锻造液压机双缸同步控制系统研究[J].液压与气动,2020(7):99-105.


 


Li S Y. Research on the synchronous control system of two cylinders for forging hydraulic press[J].Chinese Hydraulics & Pneumatics,2020(7):99-105.


 


[8]刘忠伟, 汤迎红,邓英剑.巨型模锻液压机驱动与同步过程联合控制的研究[J].机械科学与技术,2016,35(4):514-522.


 


Liu Z W, Tang Y H, Deng Y J. Research on joint control of combined drivers with synchronization for giant forging hydraulic press[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(4):514-522.


 


[9]杨继东, 车海伟,刘昆.大型模锻压机多液压缸同步控制系统的研究[J].机床与液压,2015,43(14):85-87.


 


Yang J D, Che H W, Liu K. Research on large forging presses multi-cylinder synchronous control system[J].Machine Tool & Hydraulics,2015,43(14):85-87.


 


[10]Kouba N E Y, Menaa M, Hasni M, et al. A new robust fuzzy-PID controller design using gravitational search algorithm[J]. International Journal of Computer Aided Engineering and Technology, 2019, 11(3):331-352.


 


[11]Hussien A A, Marie M J, Gaeid K S. Effect of fuzzy PID controller on feedback control systems based on wireless sensor network[J]. International Journal of Electrical and Computer Engineering, 2020, 10(3):2416-2425.


 


[12]Tian Y, Cao Z, Hu D, et al. A fuzzy PID-controlled iterative calderons method for binary distribution in electrical capacitance tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-11.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9