网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC4钛合金电热拉伸变形行为有限元模拟
英文标题:Finite element simulation on deformation behavior in electro-thermal tensile for TC4 titanium alloy
作者:   鹏1    锐1 王永军1    为2 刘宝胜2 曹凤超2 王明涛2 曾元松2 
单位:1. 西北工业大学 2. 中国航空制造技术研究院 
关键词:TC4钛合金 电热拉伸 完全耦合 拉伸速率 温度 
分类号:V261.3
出版年,卷(期):页码:2022,47(1):185-195
摘要:

 为研究拉伸速率和温度对TC4钛合金性能的影响,采用电-热-力完全耦合方法,运用林建国统一粘塑性本构模型,使用有限元分析软件ABAQUS,对不同温度和拉伸速率下的TC4钛合金电热拉伸过程进行模拟研究,并选取目标温度为750 ℃、拉伸速率为1 mm·min-1的这一组模拟结果与试验结果进行对比。对比结果显示:有限元模拟中通电加热后得到的温度场与试验中同一阶段采用热像仪测得的温度场分布相似,标距段中间部位水平线上的平均温度相差仅为2.1 ℃;此外,有限元模拟得到的拉伸力-位移曲线与试验曲线的变化趋势相近,最大拉伸力相差0.014 kN,误差约为2.41%,最大拉伸力出现时的伸长量相差0.148 mm。可见有限元模拟结果与试验结果较为吻合,证明了有限元模拟方法的可靠性。有限元模拟得到的拉伸力-位移曲线和试验曲线均表明:相同应变速率下,温度越高,钛合金塑性越好,在应变速率较高时,温度的影响作用减弱;在相同温度下,应变速率越低,钛合金的塑性越好,在温度较低时,应变速率的影响作用减弱。

 In order to study the influences of tensile rate and temperature on the properties of TC4 titanium alloy, the electro-thermal tensile processes of TC4 titanium alloy at different temperatures and tensile rates were simulated and studied by finite element analysis software ABAQUS combining the method of the electro-thermal-mechanical complete coupling and unified viscoplastic constitutive model of Lin Jianguo, and a set of simulation results with the target temperature of 750 ℃ and the tensile rate of 1 mm·min-1 were compared with the experimental results. The comparison results show that the temperature field obtained after electrified heating in the finite element simulation is similar to the temperature field measured by the thermal imager in the same stage of the experiment, and the average temperature difference of the horizontal line in the middle of the marked distance segment is only 2.1 ℃. In addition, the variation trend of the tensile force-displacement curve obtained by the finite element simulation is similar to that of the experiment curve, the maximum tensile force difference is 0.014 kN and their error is about 2.41%, and the elongation amount difference when the maximum tensile force occurs is 0.148 mm. It can be seen that the finite element simulation results are in good agreement with the experimental results, which proves the reliability of the finite element simulation method. The tensile force-displacement curve obtained by finite element simulation and the experimental curve also show that at the same strain rate, the higher the temperature is, the better the plasticity of titanium alloy is, and the influence of temperature is weakened at the higher strain rate. In addition, at the same temperature, the lower the strain rate is, the better the plasticity of titanium alloy is, and the influence of strain rate is weakened at the lower temperature. 

基金项目:
共性技术(41423030608)
作者简介:
作者简介:党 鹏(1997-),男,硕士研究生 E-mail:dangpeng52@163.com 通信作者:王永军(1968-),男,博士,副教授 E-mail:wyongjun@mail.nwpu.edu.cn
参考文献:

 [1]   蔺永诚,肖逸伟,丁永峰,等. TC系列钛合金锻造及组织性能调控工艺研究进展[J].锻压技术,2021,46(9):22-33. 


Lin Y C, Xiao Y W, Ding Y F, et al. Research progress on forging and control technology of microstructure and performance for TC series titanium alloys [J]. Forging & Stamping Technology, 2021, 46(9):22-33.

[2]   Mori K, Maki S, Tanaka Y. Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating[J]. CIRP AnnalsManufacturing Technology,2005,54(1):209-212.

[3]   Song H, Wang Z J, Gao T J. Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(1): 87-92.

[4]   门正兴,周杰,王梦寒,等.电阻连续加热成形过程电热力耦合有限元模拟分析[J].热加工工艺,2010,39(19):94-96,101.

Men Z X, Zhou J, Wang M H, et al. Electrothermal coupled finite element simulation analysis of resistance continuous heating forming process[J]. Hot Working Technology, 2010, 39(19):94-96,101.

[5]   刘天骄. 挤压型材拉弯回弹预测与补偿方法研究[D].西安:西北工业大学,2016.

Liu T J. Springback Prediction and Compensation of Extruded Profiles in Stretch Bending[D]. Xi′an: Northwestern Polytechnical University,2016.

[6]   Bai Q, Lin J G, Dean T A, et al. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions[J]. Materials Science and Engineering, 2013, 559: 352-358.      

[7]   Yang L, Li N, Wang B Y, et al. Unified constitutive modelling for twophase lamellar titanium alloys at hot forming conditions[J]. Manufacturing Review, 2016, 3:14.

[8]   Lin J, Dean T A. Modelling of microstructure evolution in hot forming using unified constitutive equations[J]. Journal of Materials Processing Technology, 2005, 167(2-3):354-362.

[9]   Lin J, Liu Y, Farrugia D C J, et al. Development of dislocationbased unified material model for simulating microstructure evolution in multipass hot rolling[J]. Philosophical Magazine, 2005, 85(18): 1967-1987.

[10]Dunne F P E, Nanneh M M, Zhou M. Anisothermal large deformation constitutive equations and their application to modelling titanium alloys in forging[J]. Philosophical Magazine A, 1997, 75(3): 587-610.

[11]Zhou M, Dunne F. Mechanismsbased constitutive equations for the superplastic behaviour of a titanium alloy[J]. Journal of Strain Analysis for Engineering Design, 1996, 31 (3): 187-196.         

[12]Zhou M, Clode M P. Constitutive equations for modelling flow softening due to dynamic recovery and heat generation during plastic deformation[J]. Mechanics of Materials, 1998, 27(2): 63-76.

[13]贾翃,逯福生,郝斌. 2017年中国钛工业发展报告[J]. 钛工业进展,2018, 35(2): 1-7.

Jia H, Lu F S, Hao B. 2017 China titanium industry development report[J]. Titanium Industry Progress,2018, 35(2): 1-7.

[14]Mohamed S Mohamed, Alistair D Foster, Lin J G, et al. Investigation of deformation and failure features in hot stamping of AA6082: Experimentation and modelling[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1): 27-38.

[15]Majorell A, Srivatsa S, Picu R C. Mechanical behavior of Ti-6Al-4V at high and moderate temperaturesPart I: Experimental results[J]. Materials Science & Engineering A, 2002, 326(2):297-305.

[16]Picu R C, Majorell A. Mechanical behavior of Ti-6Al-4V at high and moderate temperaturesPart II: Constitutive modeling[J]. Materials Science & Engineering A, 2002, 326(2): 306-316.

[17]Ankem S, Margolin H, Chariles A, et al. Mechanical properties of alloys consisting of two ductile phases[J]. Prog. Mater.Sci., 2006, 51(5): 632-709.

[18]GB/T 228.1—2010, 金属材料   拉伸试验   第1部分:室温试验方法[S].

GB/T 228.1—2010, Metallic material—Tensile testing—Part 1: Method of test at room temperature [S].
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9