网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
H型钢开坯轧辊设计的有限元模拟与试验验证
英文标题:Finite element simulation and test verification on design for break-down roll of H-beam
作者:季业益1 陆宝山1 关集俱1 李强伟2 
单位:1.苏州工业职业技术学院  2.苏州大学 
关键词:H型钢 开坯轧辊 有限元模拟 孔槽外形 轧制缺陷 
分类号:TG335.4
出版年,卷(期):页码:2021,46(10):161-167
摘要:

 为验证开坯轧辊设计的合理性与实用性,首先运用ABAQUS有限元软件建立了H型钢的开坯轧制模型,并通过Gleeble-1500热力模拟机测得了H型钢材料在不同温度及应变速率状态下的应力-应变曲线。然后,基于上述模型和数据,对H型钢的整个开坯轧制过程进行了有限元模拟,并结合H型钢的轧制试验结果,对比分析了H型钢的翼缘和腹板在各道次的轧制缺陷与精度误差。分析结果表明:所设计的H型钢轧辊辊形完全满足设计要求,H型钢在各道次的两侧翼缘的高度误差均能控制在5%以内,该误差是由于孔槽外形不完全对称,使得坯料轧制位置不正,造成偏移而引起的,可以通过进一步优化孔槽外形设计加以改善;腹板厚度存在较大偏差,但这种偏差可以通过开度控制予以修正。

 In order to verify the rationality and practicability of design for break-down roll, the break-down rolling model of H-beam was established by finite element software ABAQUS, and the stress-strain curves of H-beam material under different temperatures and strain rates were measured by Gleeble-1500 thermal mechanical simulator. Then, based on the above model and data, the whole break-down rolling process of H-beam was simulated by finite element method, and the rolling defects and precision errors of flange and pectoral plate for H-beam in each pass were compared and analyzed by combining with the rolling test results of H-beam. Analysis results show that the roll shape of H-beam designed completely meets the design requirements, and the height error of the two flange edges for H-beam in each pass can be controlled within 5%. This error is caused by the incomplete symmetry of groove shape resulting in the rolling position deviation of blank, and it can be improved by the further optimization of groove shape design. However, there is a larger deviation in the thickness of pectoral plate, which can be corrected by opening control.

基金项目:
国家自然科学基金青年基金项目(51805345);江苏省自然科学基金青年基金项目(BK20170373);江苏高校“青蓝工程”资助项目(2019);苏州市重点实验室资助项目(SZS201815)
作者简介:
作者简介:季业益(1980-),男,硕士,副教授 E-mail:00314@siit.edu.cn
参考文献:

 [1]毕科新, 孙盛志, 陈林. H型钢开坯轧制变形过程的有限元模拟分析[J]. 内蒙古科技大学学报, 2011, 30(4):364-366.


Bi K X, Sun S Z, Chen L. Finite element analysis of breakdown rolling of H-beam [J]. Journal of Inner Mongolia University of Science and Technology, 2011, 30(4):364-366.

[2]李彬, 曹杰, 张波, 等.大规格H型钢开坯轧制变形分析[J]. 安徽工业大学学报:自然科学版, 2017, 34(4):322-326.

Li B, Cao J, Zhang B, et al. Deformation analysis of breakdown rolling of large H-beam [J]. Journal of Anhui University of Technology: Natural Science Edition, 2017, 34(4):322-326.

[3]马光亭, 臧勇, 朱国明, 等. H型钢万能轧制过程中金属流动的有限元分析[J]. 北京科技大学学报, 2008, 30(2):165-168.

Ma G T, Zang Y, Zhu G M, et al. Finite element analysis of metal flow during H-beam rolling by a universal mill [J]. Journal of University of Science and Technology Beijing, 2008, 30(2):165-168.

[4]张军改, 崔松松, 秦思晓, 等. 国内楔横轧技术现状与发展趋势[J].锻压技术, 2020, 45(6):1-7.

Zhang J G, Cui S S, Qin S S, et al. Current situation and development trend of cross wedge rolling technology in China [J]. Forging & Stamping Technology, 2020, 45(6):1-7.

[5]Hasegawa H, Yamaguchi T, Suzuki T, et al. Giant H-shapes (NSGH) for building structure use [J]. NSSMC Technical Report, 1998, 368:77-82.

[6]Samantaray D, Patel A, Borah U, et al. Constitutive flow behavior of IFAC-1 austenitic stainless steel depicting strain saturation over a wide range of strain rates and temperatures [J]. Materials and Design, 2014, 56: 565-571.

[7]蔺永诚, 陈明松, 钟掘. 42CrMo钢的热压缩流变应力行为[J]. 中南大学学报:自然科学版, 2008, 39(3): 549-553.

Lin Y C, Chen M S, Zhong J. Flow stress behaviors of 42CrMo steel during hot compression [J]. Journal of Central South University: Science and Technology, 2008, 39(3):549-553.

[8]曹建国, 王天聪, 李洪波, 等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J]. 机械工程学报, 2016, 52(4): 90-96.

Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model [J]. Journal of Mechanical Engineering, 2016, 52(4): 90-96.

[9]王兴东, 黄志久, 徐福军, 等. 热轧无缝矩形钢管截面轮廓理论模型分析[J]. 塑性工程学报, 2019, 26(4):228-233.

Wang Y D, Huang Z J, Xu F J,et al.Theoretical model analysis of cross-section profile of hot rolled seamless rectangular steel pipe [J].Journal of Plasticity Engineering, 2019, 26(4): 228-233.

[10] 康永林,朱国明,陶功明, 等. 高精度型钢轧制数字化技术及应用[J]. 钢铁, 2017, 52(3): 49-57. 

Kang Y L, Zhu G M, Tao G M, et al. Digital technology and application of high precision section steel rolling [J]. Iron and Steel, 2017, 52(3): 49-57.

[11] 段明南, 臧勇, 马光亭,等. H型钢轧制有限元模型研究及应用[J]. 钢铁, 2006, (11):45-48.

Duan M N, Zhang Y, Ma G T, et al. Research and application of finite element model for H-beam rolling [J]. Iron & Steel, 2006, (11):45-48.

[12] 郭年琴, 郭晟, 文铁琦, 等. H型钢万能轧机轧辊调整装置运动学动力学分析[J]. 钢铁, 2015, 50(3):91-95.

Guo N Q, Guo S, Wen T Q, et al. Kinematics and dynamics analysis of roll adjustment device for universal rolling mill of H-beam [J]. Iron & Steel, 2015, 50(3):91-95.

[13] 贺秀芳. H型钢用辊身长度可变的水平轧辊[J]. 钢铁研究学报, 1992, (3):22.

He X F. Horizontal roll with variable length for H-beam [J]. Journal of Steel Research, 1992, (3):22.

[14] 王佃龙. 轧制摩擦系数对H型钢舌形端部的影响规律的研究[D]. 秦皇岛: 燕山大学,2013.

Wang D L. Study on the Effect of Rolling Friction Coefficient on the Tongue-shape Head of H-beam [D]. Qinhuangdao: Yanshan University, 2013.

[15] 张海龙. 中型热轧H型钢精轧过程的数字化仿真研究[D]. 济南: 山东大学, 2009.

Zhang H L. Study on Digital Simulation of Finish Rolling Process of Medium Hot Rolling H-beam [D]. Jinan: Shandong University, 2009.

[16] 武晓刚, 何纯玉, 矫志杰,等. 厚规格钢板差厚轧制数值模拟与工艺研究[J]. 东北大学学报:自然科学版, 2019, 40(2):48-52.

Wu X G, He C Y, Jiao Z J, et al. Numerical simulation and process study on thin and thick rolling of thick steel plate [J]. Journal of Northeast University: Natural Science Edition, 2019, 40(2):48-52.

[17] 付晓杰,杜晓钟,黄庆学. 基于ABAQUS二次开发的轧制过程组织性能预测[J].太原科技大学学报,2015,36(5):362-368.

Fu X J, Du X Z, Huang Q X. Prediction of rolling process structure performance based on ABAQUS secondary development [J]. Journal of Taiyuan University of Science and Technology, 2015, 36(5):362-368.

[18] 兰箭,华林,潘利波,等.大型复杂环件缩比轧制成形的实验与模拟研究[J].中国机械工程, 2006, (20): 2167-2170.

Lan J, Hua L, Pan L B, et al. Experimental and simulation study on shrinkage ratio rolling forming of large complex ring parts [J]. China Mechanical Engineering, 2006, (20): 2167-2170.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9