网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
变形-热处理流程对6082铝合金组织的影响
英文标题:Influence of deformation-heat treatment process on microstructure for 6082 aluminum alloy
作者:曾凡宜1 左长兵2 张海栋1 任治华1 王国文2 邓磊1 王新云1 金俊松1 
单位:1.华中科技大学 材料成形与模具技术国家重点实验室 2.湖北三环锻造有限公司 
关键词:6082铝合金 热处理 粗晶 组织精确控制 退火-成形 固溶-成形 
分类号:TG316
出版年,卷(期):页码:2021,46(9):204-211
摘要:

 为了探明不同变形和热处理流程对6082铝合金微观组织和力学性能的影响规律,开展了6082铝合金的常规成形、退火-成形以及固溶-成形3种实验,并对微观组织和力学性能进行了表征。结果表明,退火和固溶处理可以减少挤压态试样中小角度晶界的比例,并有效地弱化其单一的强S织构。在400 ℃/0.1 s-1变形时,退火-成形和固溶-成形工艺可以有效避免常规成形出现异常晶粒长大的现象;在500 ℃/0.1 s-1变形时,退火-成形和固溶-成形工艺下试样的平均晶粒尺寸比常规成形试样的平均晶粒尺寸有所增加。工艺实验结果表明,采用固溶-成形工艺,6082铝合金锻件的抗拉强度可达到276.0 MPa,略低于常规成形锻件的283.6 MPa,但可以显著减少锻件粗晶,为高质量6082铝合金锻件的生产提供了一种新的路线。

 In order to explore the influence laws of different deformation and heat treatment processes on microstructures and mechanical properties of 6082 aluminum alloy, three kinds of experiments of conventional forming, annealing-forming and solid solution-forming for 6082 aluminum alloy were carried out, and the microstructures and mechanical properties were characterized. The results show that annealing and solid solution treatments can reduce the proportion of small-angle grain boundaries in the extruded sample and effectively weaken its single strong S texture. When deforming at 400 ℃-0.1 s-1, the annealing-forming and solid solution-forming processes can effectively avoid the abnormal grain growth phenomenon in the conventional forming, while deforming at 500 ℃/0.1 s-1, the average grain sizes of the sample under the annealing-forming and solid solution-forming processes are increased compared with those of the conventional forming. The results of process experiment show that using the solid solution-forming process, the tensile strength of 6082 aluminum alloy forgings reaches 276.0 MPa, which is slightly lower than 283.6 MPa of the conventional forming forgings, but the coarse grains of forgings are significantly reduced,Which provides a new route for the production of 6082 aluminum alloy forgings with high quality.

基金项目:
湖北省重点研发计划(2020BAB040);中央高校基本科研业务费专项资金项目(2019kfyXMBZ030)
作者简介:
曾凡宜(1996-),男,硕士研究生 E-mail:M201970925@hust.edu.cn 通信作者:邓磊(1982-),男,博士,副教授 E-mail:denglei@hust.edu.cn
参考文献:

 [1]Liu S D, Chen X L, Zhang D Z, et al. Effect of solution heat treatment temperature on microstructure and properties of 6082 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(3): 582-588.


 


[2]Birol Y, Gokcil E, Guvenc M A, et al. Processing of high strength EN AW 6082 forgings without a solution heat treatment[J]. Materials Science and Engineering: A, 2016, 674: 25-32.


 


[3]Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M]. UK: Elsevier Ltd., 2004.


 


[4]王成江, 屈丽杰,英卫东,等. 铝合金模锻件粗晶缺陷浅析[J]. 轻合金加工技术, 2007,(7): 37-38.


 


Wang C JQu L JYing W D, et al. Analyse of coarse grain defect in aluminium alloy die forgings[J]. Light Alloy Fabrication Technology, 2007,(7): 37-38.


 


[5]陈微, 谷艳飞,官英平. 锻造高钛6061铝合金粗晶控制方法的研究[J]. 热加工工艺, 2018, 47(21): 61-65.


 


Chen W, Gu Y F, Gong Y P. Study on coarse grain control method of forged high titanium 6061 aluminum alloy[J]. Hot Working Technology, 2018, 47(21): 61-65.


 


[6]李继光,王湃,张杰刚,等. 2219铝合金固溶处理晶粒异常长大现象分析[J].锻压技术,2019,44(9):156-159.


 


Li J GWang PZhang J Get al. Analysis on abnormal grain growth for 2219 aluminum alloy treated by solution treatment[J].Forging & Stamping Technology2019,44(9):156-159.


 


[7]吴道祥, 周杰, 张建生,. 7050铝合金航空锻件热锻成形穿流缺陷分析[J].华中科技大学学报:自然科学版, 2015, 43(4):69-73.


 


Wu D X, Zhou J, Zhang J S, et al. Analyzing partial draining of 7050 aluminum alloy aircraft forging after hot die forming[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2015, 43(4):69-73.


 


[8]孙田田, 郑俊涛,庄晓伟,等. 6082铝合金上摆臂件成形工艺初探[J]. 锻压技术, 2019, 44(8): 66-71.


 


Sun T T, Zheng J T, Zhuang X W, et al. Preliminary study on forming process of upper swing arm for 6082 aluminum alloy[J]. Forging & Stamping Technology, 2019, 44(8): 66-71.


 


[9]Han N M, Zhang X M, Liu S D, et al. Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050[J]. Journal of Alloys & Compounds, 2011, 509(10): 4138-4145.


 


[10]中国机械工程学会热处理学会. 热处理手册:第1卷 工艺基础[M].4. 北京:机械工业出版社, 2013.


 


China Heat Treatment Society. Heat Treatment Manual:Volume I Process Foundation[M]. 4th Edition.Beijing: China Machine Press, 2013.


 


 


[11]张佳琪, 戴青松, 付平, . 5083铝合金静态再结晶行为研究[J]. 材料科学, 2016, 6(3): 125-132.


 


Zhang J Q, Dai Q S, Fu P, et al. Study of static recrystallization behavior of 5083 aluminum alloy[J]. Material Sciences, 2016, 6(3): 125-132.


 


[12]Qian X, Parson N, Chen X G. Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing[J]. Journal of Materials Science & Technology, 2020, 52: 189-197.


 


[13]Wang X, Guo M, Chapuis A, et al. The dependence of final microstructure, texture evolution and mechanical properties of AlMgSiCu alloy sheets on the intermediate annealing[J]. Materials Science and Engineering: A, 2015, 633(5):46-58.


 


[14]Liu W C, Morris J G. Effect of initial texture on the recrystallization texture of cold rolled AA5182 aluminum alloy[J]. Materials Science and Engineering: A, 2005, 402(1-2): 215-227.


 


[15]Suwas S, Ray K R. Crystallographic Texture of Materials[M].UK: Springer, 2014.


 


[16]徐照飞. 基于晶体塑性模型的6N01铝合金热挤压过程材料变形分析与织构预测[D]. 济南:山东大学, 2020.


 


Xu Z F. Deformation Analysis and Prediction on Texture Evolution of 6N01 Aluminium Alloy during Different Hot Extrusion Process Based on Crystal Plasticity Model[D]. JinanShangdong University, 2020.


 


[17]Sidor J J, Petrov R H, Kestens L A I. Microstructural and texture changes in severely deformed aluminum alloys[J]. Materials Characterization, 2011, 62(2): 228-236.


 


[18]Kim H, Kang C, Huh M, et al. Effect of primary recrystallization texture on abnormal grain growth in an aluminum alloy[J]. Scripta Materialia, 2007, 57(4): 325-327.


 


[19]Gokcil E, Akdi S, Birol Y. A novel processing route for the manufacture of EN AW 6082 forged components[J]. Materials Research Innovations, 2015, 19: 311-314.


 


[20]Birol Y. The effect of processing and Mn content on the T5 and T6 properties of AA6082 profiles[J]. Journal of Materials Processing Technology, 2006, 173(1): 84-91.


 


[21]王家毅,米振莉,李辉,等. 基于热加工图6082铝合金锻造工艺优化及强化机制研究[J].稀有金属, 2019,43(2): 113-121.


 


Wang J Y, Mi Z L, Li H, et al. Isothermal forging process and strengthening mechanism of 6082 aluminum alloy through processing map[J]. Chinese Journal of Rare Metals, 2019,43(2): 113-121.


 


[22]唐健江,王嘉,刘嘉乐,等. 变形时效对6061铝合金板材的组织和力学性能的影响[J].锻压技术,2019,44(7):165-169.


 


Tang J JWang JLiu J Let al. Influence of deformation aging on microstructure and mechanical properties of 6061 aluminum alloy plate[J].Forging & Stamping Technology2019,44(7):165-169.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9