网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超声振动功率对2024铝合金显微组织、显微硬度及 耐腐蚀性能的影响
英文标题:Influence of ultrasonic vibration power on microstructure, microhardness and corrosion resistance property for 2024 aluminum alloy
作者:张立杰1 2 闫洪1 2 
单位:1. 南昌大学 机电工程学院 2. 南昌市轻合金材料制备与加工重点实验室 
关键词:超声功率 2024铝合金 显微组织 显微硬度 耐腐蚀性能 
分类号:TG292
出版年,卷(期):页码:2021,46(9):138-144
摘要:

 研究了不同超声功率(0 700 1400 2800 W)对2024铝合金显微组织、显微硬度及耐腐蚀性能的影响。结果表明:2024铝合金在经过超声处理后,其显微组织、显微硬度以及耐腐蚀性能均得到了较好的改善。这是由于超声波在熔体中产生的空化作用对熔体中的固体颗粒产生了强烈作用,击碎了初生枝晶,促进了形核,使晶粒得到了细化,进而优化了该合金的显微硬度(由98.9 HV增加至120.5 HV)和耐腐蚀性能。失重和析氢测试结果表明:与未处理的合金相比较,在对合金进行2800 W超声振动处理后,合金的失重腐蚀速率由0.49 mg·(cm2·h)-1降低至0.25 mg·cm2·h-1,下降约49.0%;析氢腐蚀速率由0.44 ml·(cm2·h)-1降低至0.21 ml·cm2·h-1,下降约52.3 %

 

 The influences of different ultrasonic powers, such as 0, 700, 1400 and 2800 W on microstructure, microhardness and corrosion resistance property of 2024 aluminum alloy were studied. The results show that the microstructure, microhardness and corrosion resistance property of 2024 aluminum alloy are improved after ultrasonic treatment. The reason is that the cavitation produced by ultrasonic wave in the melt has a strong effect on the solid particles in the melt to break the primary dendrite and promote the nucleation resulting in the refinement of grain and the optimization of microhardness which is from 98.9 HV to 120.5 HV and the corrosion resistance property of the alloy. The results of weighthessness and hydrogen evolution tests show that compared with the untreated alloy, after the alloy is subjected to ultrasonic vibration treatment of 2800 W, the weighthessness corrosion rate of alloy is reduced from 0.49 mL·(cm2·h)-1 to 0.25 mg·(cm2·h)-1, a decrease of about 49.0%, and the hydrogen evolution corrosion rate is reduced from 0.44 ml(cm2·h)-1 to 0.21 ml·(cm2·h)-1, a decrease of about 52.3%.

 

基金项目:
江西省自然科学基金资助项目(20181BAB206026)
作者简介:
张立杰(1996-),男,硕士研究生 E-mail:185219754@qq.com 通信作者:闫洪(1962-),男,博士,教授 E-mail:yanhong_wh@163.com
参考文献:

 [1]丁文文, 李涛, 吴何畏. 等径角挤压道次对7075铝合金组织和腐蚀性能的影响 [J]. 锻压技术, 2019, 44 (9): 146-152.


 


Ding W W, Li T, Wu H W. Effect of equaldiameter angular extrusion passes on microstructure and corrosion properties of 7075 aluminum alloy [J]. Forging & Stamping Technology, 2019, 44 (9): 146-152.


 


[2]柏阳, 吴玉程,罗志勇,等. 基于Arrhenius方程和BP神经网络的2024Al/Al18B4O33w复合材料热变形流变应力预测 [J].锻压技术,2019,44(8):168-175.


 


Bo Y, Wu Y C, Luo Z Y, et al. Prediction on hot deformation flow stress of 2024Al/Al18B4O33w composites based on Arrhenius equation and BP neural network [J]. Forging & Stamping Technology, 2019,44(8):168-175.


 


[3]Ghosh K S, Hilal M D, Sagnik B. Corrosion behavior of 2024 AlCuMg alloy of various tempers [J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (11): 3215-3227.


 


[4]Alfieri V, Cardaropoli F, Caiazzo F, et al. Investigation on porosity content in 2024 aluminum alloy welding by Yb:Yag disk laser [J]. Advanced Materials Research, 2012, 383-390 (3): 6265-6269.


 


[5]Boag A, Hughes A E, Glenn A M, et al. Corrosion of AA2024T3 Part I: Localised corrosion of isolated IM particles [J]. Corrosion Science, 2011, 53 (1): 17-26.


 


[6]Sun S, Zheng Q, Li D, et al. Exfoliation corrosion of extruded 2024T4 in the coastal environments in China [J]. Corrosion Science, 2011, 53 (8): 2527-2538.


 


[7]Petroyiannis P V, Kermanidis A T, Akid R, et al. Analysis of the effects of exfoliation corrosion on the fatigue behaviour of the 2024T351 aluminium alloy using the fatigue damage map [J]. International Journal of Fatigue, 2005, 27 (7): 817-827.


 


[8]Orlov D, Ralston K D, Birbilis N, et al. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing [J]. Acta Materialia, 2011, 59 (15): 6176-6186.


 


[9]Xiao Y P, Pan Q L, Li W B, et al. Influence of heat treatment on corrosion behaviour of AlZnMgCuZrSc alloy [J]. Materials and Corrosion, 2015, 63 (5): 421-430.


 


[10]Yu B B, Hong Y, Zhu J B, et al. Effects of La on microstructure and corrosion behavior of AlSi5Cu1Mg alloy [J]. Acta Metallurgica Sinica, 2019, 32 (4): 33-41.


 


[11]Tang J, Han Z, Zuo Y, et al. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating [J]. Applied Surface Science, 2011, 257 (7): 2806-2812.


 


[12]Zhang L, Eskin D G, Miroux A, et al. Formation of microstructure in AlSi alloys under ultrasonic melt treatment [J]. TMS Light Metals, 2012, 510 (1): 999-1004.


 


[13]Puga H, Costa S, Barbosa J, et al. Influence of ultrasonic melt treatment on microstructure and mechanical properties of AlSi9Cu3 alloy [J]. Journal of Materials Processing Technology, 2011, 211 (11): 1729-1735.


 


[14]Han Y, Li K, Wang J, et al. Influence of highintensity ultrasound on grain refining performance of Al5Ti1B master alloy on aluminium[J]. Materials Science and Engineering A, 2005, 405 (1-2): 306-312.


 


[15]GB/T 4340.1—2009,金属材料维氏硬度试验第1部分:试验方法[].


 


[16]Jiang B, Xiang Q, Atrens A, et al. Influence of crystallographic texture and grain size on the corrosion behaviour of asextruded Mg alloy AZ31 sheets [J]. Corrosion Science, 2017, 126: 374-380.


 


[17]Chen Y, Yin Z, Yan H, et al. Effect of samarium on the microstructure and corrosion resistance of AZ91 magnesium alloy treated by ultrasonic vibration [J]. Materials, 2018, 11 (11): 1331-2343.


 


[18]Turnbull D J. Formation of crystal nuclei in liquid metals [J]. Journal of Applied Physics, 1950, 21 (10): 1022-1028.


 


[19]Zou Y, Wang J, Zheng Y Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater [J]. Corrosion Science, 2011, 53 (1): 208-216.


 


[20]Argade G R, Panigrahi S K, Mishra R S. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium [J]. Corrosion Science, 2012, 58 (5): 145-151.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9