网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金控制臂锻造工艺及模具有限元模拟优化
英文标题:Optimization on forging process and die for aluminum alloy control arm using finite element simulation
作者:谢映光 梁满朝 王成磊 梁朝杰 林德民 陈中敢 
单位:桂林电子科技大学 广西师范大学 广西鸣新底盘部件有限公司 
关键词:锻造 6082铝合金 控制臂 逆向工程 有限元模拟 
分类号:TH164
出版年,卷(期):页码:2021,46(7):7-13
摘要:
为解决锻造铝合金控制臂的产品质量低、试验优化周期长等问题,以某型号汽车铝合金控制臂典型零件为研究对象,采用逆向工程手段优化终锻件的结构设计,结合Forge有限元分析计算软件进一步优化工艺方案及模具结构,并进行试生产验证。试生产结果表明:优化工艺方案及模具结构后,锻件填充性良好,无折叠和缩孔缺陷,材料利用率提高了11%。对试生产样件进行宏观分析及力学性能测试,分析结果表明:热处理后试样的组织均匀、晶粒细小、力学性能明显提高。前述基于有限元模拟和逆向工程结合的锻造工艺与模具结构优化方法,能够有效地提高产品合格率、材料利用率,缩短试验周期,降低生产成本,为此类零件锻造工艺的制定提供了重要参考。
Typical parts for a certain type of automobile aluminum alloy control arm were taken as the research object to solve the problems of low product quality and long test optimization cycle of forged aluminum alloy control arm. Reverse engineering mean was used to optimize the structure design of final forgings, combined with Forge finite element analysis and calculation software, the process plan and die structure were further optimized, and the trial production verification was finally conducted. The results of the trial production show that the forgings are well filled without folding and shrinkage defects, and the material utilization rate is increased by 11% after optimizing the process plan and die structure. Macro-analysis and mechanical performance tests were conducted on the trial production samples. The analysis results show that the samples have a uniform structure, fine grains and significantly improved mechanical properties after heat treatment. The aforementioned method based on the combination of finite element simulation and reverse engineering to optimize the forging process and die structure can effectively improve the product qualification rate and material utilization rate, shorten the test cycle, and reduce the production costs, which provide an important reference for the formulation of forging process for such parts.
基金项目:
广西自然科学基金资助项目(2018GXNSFAA281244,2020GXNSFAA297060); 中国博士后科学基金面上资助项目(2020M681092); 湖南省科技创新计划项目(2018JJ5031); 桂林市科学研究与科技开发项目(20170302,2020010903); 电子信息材料与器件教育部工程研究中心(EIMD-AB202009); 广西电子信息材料构效关系重点实验室(桂林电子科技大学)资助(201016-Z); 桂林电子科技大学研究生教育创新计划项目(2020YCXS118)
作者简介:
作者简介:谢映光(1994-),男,学士,助教,E-mail:ygx1203@163.com;通信作者:王成磊(1985-),男,博士,副教授,E-mail:clw0919@163.com
参考文献:
[1]Meschut G, Janzen V, Olfermann T. Innovative and highly productive joining technologies for multi-material lightweight car body structures[J]. Journal of Materials Engineering and Performance, 2014,23(5):1515-1523.
[2]Jia J, Ulfvarson A. Modal testing and finite element calculations for lightweight aluminium panels in car carriers[J]. Marine Technology, 2006,43 (1):11-21.
[3]刘静安,盛春磊,刘煜.铝材在汽车上的开发应用及重点新材料研发方向[J].轻合金加工技术,2012,40(10):9-18.
Liu J A, Sheng C L, Liu Y. Development and application of aluminum material in automobile and research direction of main new material [J]. Light Alloy Fabrication Technology, 2012, 40(10): 9-18.
[4]Grabner F, Osterreicher J A, Gruber B, et al. Cryogenic forming of Al-Mg alloy sheet for car outer body applications [J]. Advanced Engineering Materials, 2019,21(8): 1900089.
[5]田荣璋,王祝堂.铝合金及其加工手册[M].长沙:中南大学出版社, 2007.
Tian R Z, Wang Z T. Aluminium Alloy and Its Processing Manual [M]. Changsha: Central South University Press, 2007.
[6]刘江伟,国凯,王广春,等.金属基材料激光增材制造材料体系与发展现状[J].激光杂志,2020,41(3):6-16.
Liu J W, Guo K, Wang G C, et al. Materials and development states of laser additive manufactured metal-based alloys [J]. Laser Journal, 2020, 41(3): 6-16.
[7]张琪,王国军.我国非连续增强铝基复合材料的研究及应用现状[J].轻合金加工技术,2019,47(5):18-24.
Zhang Q, Wang G J. Research and application status of discontinuous reinforced aluminum matrix composites in China [J]. Light Alloy Fabrication Technology, 2019, 47(5): 18-24.
[8]Phillion A B, Cockcroft S L, Lee P D. A new methodology for measurement of semi-solid constitutive behavior and its application to examination of as-cast porosity and hot tearing in aluminum alloys[J]. Materials Science & Engineering A, 2008,491(1-2): 237-247.
[9]徐骏,张志峰.“半固态+”及其在工业中的应用[J].特种铸造及有色合金,2017,37(12):1333-1338.
Xu J, Zhang Z F.“Semi-solid Metals+” and its application in industry [J]. Special Casting & Nonferrous Alloys, 2017, 37(12): 1333-1338.
[10]Ji S, Fan Z, Bevis M J. Semi-solid processing of engineering alloys by a twin-screw rheomoulding process[J]. Materials Science & Engineering A,2001,299(1-2): 210-217.
[11]Flemings M C. Behavior of metal alloys in the semisolid state[J].Metallurgical Transactions,1991,A22(5):957-981.
[12]Yang D Y, Kim K H. Rigid-plastic finite element analysis of plane strain ring rolling[J].International Journal of Mechanical Sciences,1988,30(8):167-176.
[13]Mori K, Oda O. Simulation of plane-strain rolling by the rigid-plastic finite element method[J].International Journal of Mechanical Sciences,1982,24(9):519-527.
[14]周杰,王泽文,徐戊矫.汽车铝合金转向节臂锻造成形过程的数值模拟和实验研究[J].热加工工艺,2010,39(3):85-87.
Zhou J, Wang Z W, Xu W J. Simulation and experimental study on forming process of aluminum alloy knuckle arm [J]. Hot Working Technology, 2010, 39(3): 85-87.
[15]Ou H, Lan J, Armstrong C G. An FE simulation and optimisation approach for the forging of aeroengine components[J]. Journal of Materials Processing Technology, 2004, 151(1-3):208-216.
[16]Bernd B, Wolfram V, Daniel M, et al. A combined numerical and experimental investigation on deterministic deviations in hot forging processes[J]. Procedia Manufacturing, 2020, 47:295-300.
[17]Yilmaz N F, Eyercioglu O. Knowledge based reverse engineering tool for near net shape axisymmetric forging die design[J].Mechanika,2008, 5: 65-73.
[18]胡彦萍.3D扫描和逆向建模技术应用[J].机械工程与自动化,2019,(6):202-203.
Hu Y P. Application of 3D scanning and inverse modeling technology [J]. Mechanical Engineering and Automation, 2019, (6): 202-203.
[19]耿冬妮,贾帅,寇莹,等.基于3D打印铸造技术综合实训模式的探索与实践[J].铸造技术,2020,41(3):299-302.
Geng D N, Jia S, Kou Y, et al. Exploration and practice of comprehensive training model based on 3D printing casting technology [J]. Foundry Technology, 2020, 41(3): 299-302.
[20]Ou H, Lan J, Armstrong C G,et al. Reduction in post forging errors for aerofoil forging using finite element simulation and optimization[J]. Modelling and Simulation in Materials Science and Engineering, 2006,14:179-93.
[21]姚泽坤.锻造工艺学与模具设计[M]. 西安:西北工业大学出版社, 2007.
Yao Z K. Forging Technology and Die Design [M]. Xian: Northwestern Polytechnical University Press, 2007.
[22]Chen X W, Jung D W. Gear hot forging process robust design based on finite element method[J]. Journal of Mechanical Science & Technology, 2008, 22(9):1772-1778.
[23]朱庆丰,张扬,朱成,等.高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J].材料工程,2017,45(4):15-20.
Zhu Q F, Zhang Y, Zhu C, et al. Numerical simulation and experimental investigation on multi-direction forging behaviors of high purity aluminum [J]. Journal of Materials Engineering, 2017, 45(4): 15-20.
[24]Zhao Y M, Han X H. Rotary forging with double symmetry rolls [J]. Ironmaking & Steelmaking, 2010, 37: 624-632.
[25]张承鉴. 辊锻技术[M]. 北京:机械工业出版社, 1986.
Zhang C J. Roll Forging Technology [M]. Beijing: China Machine Press, 1986.
[26]王飞,王红.汽车用6082铝合金热处理工艺研究[J].热加工工艺,2018,47(16):245-247,253.
Wang F, Wang H. Study on heat treatment process of 6082 aluminum alloy for automobile [J]. Hot Working Technology, 2018,47(16):245-247,253.
[27]冉旭,孙宏伟,杜明,等.固溶处理对6082锻造铝合金控制臂组织与性能的影响[J].材料热处理学报,2016,37(12):56-61.
Ran X, Sun H W, Du M, et al. Effect of solution treatment on microstructure and properties of a 6082 forged aluminum alloy control arm [J]. Journal of Materials Heat Treatment, 2016, 37(12): 56-61.
[28]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9