网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti6Al3Nb2Zr1Mo合金双态组织的热加工行为
英文标题:Hot working behavior of dual-state microstructure for Ti-6Al-3Nb-2Zr-1Mo alloy
作者:罗高丽1 张凌峰1 2 熊毅1 2 刘克敌1 
单位:1.河南科技大学 材料科学与工程学院 2.有色金属新材料与先进加工技术省部共建协同创新中心 
关键词:Ti6Al3Nb2Zr1Mo合金 双态组织 热加工图 显微组织 力学性能 
分类号:TG146.4
出版年,卷(期):页码:2021,46(6):212-219
摘要:

 在Gleeble1500D热模拟实验机上对Ti6Al3Nb2Zr1Mo合金双态组织进行热模拟实验,变形温度为850~1050 ℃,应变速率为0.010~1.000 s-1,变形量为60%;根据不同条件下的应力峰值计算得其热变形激活能Q786.609 kJ·m-1,并构建本构方程,最后在动态模型的基础上建立热加工图;利用金相显微镜(OM)和透射电子显微镜(TEM)观察其显微组织。实验结果表明,材料在热加工过程中会出现2个失稳区:变形温度为860~920 ℃、应变速率为0.075~0.330 s-1和变形温度为940~1030 ℃、应变速率为 0.010~0.058 s-11个加工稳定区:变形温度为920~1000 ℃、应变速率为0.048~0.280 s-1。变形温度为900 ℃、应变速率为0.10 s-1时,合金变形容易发生失稳;变形温度为1000 ℃、应变速率为0.050 s-1时,合金会出现绝热剪切带,从而导致材料在使用过程中失效;变形温度为950 ℃、应变速率为0.100 s-1时,合金的塑性和强度适中,疲劳强度和韧性提高,具有良好的综合力学性能。

 The thermal simulation experiment of dual-state microstructure for Ti-6Al-3Nb-2Zr-1Mo alloy under the deformation temperature of 850-1050 ℃, the strain rate of 0.01-1 s-1 and the deformation amount of 60% was conducted by thermal simulation experiment machine Gleeble-1500D, the thermal deformation activation energy Q calculated from the peak stress under different conditions was 786.609 kJ·m-1, and the constitutive equation was constructed. Then, the hot processing map was established on the basis of dynamic model, and the microstructure was observed by metallographic microscope(OM) and transmission electron microscope(TEM). The experimental results show that there are two instability zones at the temperature of 860-920 ℃, the strain rate of 0.075-0.33 s-1 and the deformation temperature of 940-1030 ℃, the strain rate of 0.01-0.058 s-1, and one processing stability zone at the deformation temperature of 920-1000 ℃, the strain rate of 0.048-0.280 s-1. In addition, the alloy deformation is prone to instability at the deformation temperature of 900 ℃ and the strain rate of 0.10  s-1, and the adiabatic shear zone appears at the deformation temperature of 1000 ℃ and the strain rate of 0.050 s-1, which leads to the failure of material during use. However, at the deformation temperature of 950 ℃ and the strain rate of 0.100 s-1, the plasticity and strength of alloy are moderate, the fatigue strength and toughness are improved, and the alloy has good comprehensive mechanical properties. 

基金项目:
河南省科技厅人才项目(17HASTIT026)
作者简介:
作者简介:罗高丽(1995-),女,硕士研究生 E-mail:lgl723310@163.com 通信作者:张凌峰(1974-),男,博士,教授 E-mail:zh_lingfeng@163.com
参考文献:

 [1]杨力祥, 肖旅,周海涛, .高强耐热稀土镁合金研究进展[J].上海航天,2019,36(2):38-44.


 


Yang L X, Xiao L,Zhou H T, et al. Current development of highstrength heatresistant rare earth magnesium alloys[J].Aerospace Shanghai,2019,36(2):38-44.


 


[2]程仁山, 潘虎成,谢东升, .新型高强度低合金化镁合金研究进展[J].中国材料进展,2020,39(1):31-38.


 


Cheng R S, Pan H C, Xie D S, et al. Research progress of newly developed highstrength and lowalloyed magnesium alloy[J].Materials China,2020,39(1):31-38.


 


[3]叶斌, 何柏林.高强镁合金及其制备工艺的研究进展[J].热加工工艺,2019,48(24):5-10.


 


Ye B, He B L. Research progress of high strength magnesium alloy and its preparation process[J].Hot Working Technology,2019,48(24):5-10.


 


[4]郭强, 严红革,陈振华, .AZ80镁合金多向锻造变形过程中晶粒取向的演变[J].金属学报,2007,43(6):619-624.


 


Guo Q, Yan H G, Chen Z H, et al. Evolution of the grain orientation of AZ80 magnesium alloy during multiple forging process[J]. Acta Metallurgica Sinica, 2007,43(6):619-624.


 


[5]姜俊, 李慧中,欧阳杰, .多向锻造AZ80A镁合金的静态再结晶行为[J].中国有色金属学报,2014,25(9):2205-2212.


 


Jiang J, Li H Z, Ouyang J, et al. Static recrystallization behavior of multidirectional forged AZ80A magnesium alloy[J].The Chinese Journal of Nonferrous Metals,2014,25(9):2205-2212.


 


[6]张浩, 崔子振,杜志惠, .高强耐热镁合金陀螺仪支架精密锻造工艺[J].宇航材料工艺,2012,42(1):50-53.


 


Zhang H, Cui Z Z, Du Z H, et al. Isothermal forming of gyroscopebrackets by numerical simulation and experiment[J].Aerospace Materials & Technology,2012,42(1):50-53.


 


[7]石彩华. 高强镁合金锻造加工工艺与组织性能研究[J].铸造技术,2018,39(4):886-889.


 


Shi C H. Processing technology and microstructure properties of highstrength magnesium alloy[J].Foundry Technology,2018,39(4):886-889.


 


[8]杜锦涛, 权高峰,段书华.轻量化高强度镁合金过渡车钩研制[J].热加工工艺,2018,47(17):151-154,158.


 


Du J T, Quan G F, Duan S H. Development of lightweight high strength magnesium alloy transition coupler[J].Hot Working Technology,2018,47(17):151-154,158.


 


[9]郝孟军, 宫涛,代艳霞.汽车轮毂用改性镁合金锻造工艺[J].锻压技术,2019,44(4):22-27.


 


Hao M J, Gong T, Dai Y X. Modified magnesium alloy forging process for automobile hub[J].Forging & Stamping Technology,2019,44(4):22-27.


 


[10]邵军. EWE531高强度耐热镁合金熔炼工艺优化[J].中国金属通报,2019,(11):108,110.


 


Shao J. Smelting process optimization for EWE531 high strength heat resistant magnesium alloy[J].China Metal Bulletin,2019,(11):108,110.


 


[11]王小宁, 张长军.减速器用高强镁合金力学及腐蚀行为研究[J].筑路机械与施工机械化,2017,34(3):107-111.


 


Wang X N, Zhang C J. Study on mechanics and corrosion behavior of high strength magnesium alloy for gear reducer[J].Road Machinery & Construction Mechanization,2017,34(3):107-111.


 


[12]王瑛. 浇注温度对汽车用含锰高强镁合金铸态性能的影响[J].轻合金加工技术,2019,47(5):30-33.


 


Wang Y. Effect of pouring temperature on ascast properties of highstrength manganesecontaining magnesium alloy for automobile[J].Light Alloy Fabrication Technology,2019,47(5):30-33.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9