网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
多缸液压机的滑模变结构智能同步控制
英文标题:Intelligence synchronous control on sliding mode variable structure for multicylinder hydraulic press
作者:陶翠霞 赵鹏 孙波 
单位:山东劳动职业技术学院 教务处 
关键词:多缸液压机 滑模变结构 智能同步控制 滑模层 改进相邻交叉耦合控制器 
分类号:TP23
出版年,卷(期):页码:2021,46(6):142-149
摘要:

 为了减小多缸液压机的同步控制误差和跟踪误差,设计了基于饱和函数控制律的改进型相邻交叉耦合控制器。以阀控电压为控制量,建立了四缸液压机同步系统的动力学模型。为了减少控制器输入量的数量并降低控制律的复杂度,改进了相邻交叉耦合控制器。为了减小滑模控制的抖振幅度,基于饱和函数提出了滑模层的概念,使滑模层内的系统状态在接近滑模面时的切换惯性减小,从而减弱了抖振问题。经仿真与实验验证,饱和函数控制律的抖振幅度远远小于符号函数控制律的抖振幅度;在仿真偏载情况下,最大稳态同步误差为0.03 mm,在实验偏载情况下,最大稳态同步误差为0.0413 mm,基于饱和函数控制律的改进型相邻交叉耦合控制器能够实现较高精度的同步控制。

 To reduce the synchronous control error and tracking error of multi-cylinder hydraulic press, the improved adjacent cross-coupling controller based on the saturation function control law was designed, and the dynamic model of synchronious system for a four-cylinder hydraulic press was built by setting valve-control voltage as control quantity. Then, the adjacent cross-coupling controller was improved to reduce the number of controller input and the complexity of control law, and the concept of sliding mode layer based on saturation function was put forward to decrease the chattering amplitude of sliding mode control, which reduced the switching inertia when the system state in the sliding mode layer was close to the sliding mode surface, thereby reducing the chattering problem. The simulation and experimental verification show that the chattering amplitude of the saturation function control law is far less than that of the sign function control law. In the case of simulated eccentric load, the maximum stable synchronous error is 0.03 mm, and in the case of experimental eccentric load, the maximum stable synchronous error is 0.0413 mm. Thus, the improved adjacent cross-coupling controller based on the saturation function control law realizes high-precision synchronous control.

基金项目:
山东省高等学校“青创科技计划”资助项目(2019KJN015);山东省职业教育技艺技能传承创新平台资助项目
作者简介:
陶翠霞(1979-),女,硕士,副教授 E-mail:yang5551314@126.com
参考文献:

 [1]裴红蕾, 刘刚,赵翠萍.基于二级控制器的重型锻造液压机同步控制[J].锻压技术,2019,44(1):118-122,141.


 


Pei H L, Liu G, Zhao C P. Heavyduty forging hydraulic press synchronous control based on secondary controller [J]. Forging & Stamping Technology, 2019, 44(1):118-122,141.


 


[2]李栓柱, 李登攀,李灿.基于免疫神经网络的双缸液压机同步PID控制[J].机械工程师,2019,332(2):139-142.


 


Li S Z, Li D P, Li C. Doublecylinder hydraulic press synchronous PID control based on immune neutral network algorithm [J]. Mechanical Engineer, 2019,332 (2):139-142.


 


[3]刘雷. 考虑测量噪声的双液压缸同步控制方法研究[D].南京:南京理工大学,2019.


 


Liu L. Study on Two Hydraulic Cylinder Synchronous Control Method Considering Measurement Noise[D]. Nanjing: Nanjing University of Science and Technology, 2019.


 


[4]刘忠伟, 汤迎红,邓英剑.巨型模锻液压机驱动与同步过程联合控制的研究[J].机械科学与技术,2016,35(4):514-522.


 


Liu Z W, Tang Y H, Deng Y J. Research on joint control of combined drivers with synchronization for giant forging hydraulic press [J]. Mechanical Science and Technology for Aerospace Engineering, 2016,35(4):514-522.


 


[5]翟华, 黄杨成,丁曙光.基于遗传算法的双缸同步系统仿真研究[J].液压气动与密封,2015,35(11):41-43.


 


Zhai H, Huang Y C, Ding S G. Simulation research of synchronization system of double cylinder based on genetic algorithm[J]. Hydraulics Pneumatics & Seals, 2015,35(11):41-43.


 


[6]李洪龙, 逄波.双缸四柱液压机同步控制系统的研究[J].机床与液压,2019,47(2):82-85,91.


 


Li H L, Pang B. Research on synchronization control system of double hydraulic cylinder fourcolumn hydraulic press [J]. Machine Tool & Hydraulics, 2019,47 (2):82-85,91.


 


[7]于今. 800 MN模锻液压机液压系统设计与同步控制策略研究[D].重庆:重庆大学,2016.


 


Yu J. Research on Design and Synchronous Control of Hydrualic System in 800 MN Forging Hydraulic Press [D]. Chongqing: Chongqing University, 2016.


 


[8]徐济宣, 马辉.重型液压机执行器自适应滑模容错控制[J].锻压技术,2020,45(4):140-147.


 


Xu J X, Ma H. Heavyduty hydraulic press actuator fault control based on adaptive sliding mode faulttolerant controller[J]. Forging & Stamping Technology, 2020,45(4):140-147.


 


[9]Reichhartinger M, Koch S. Observerbased sliding mode control of hydraulic cylinders in the presence of unknown load forces[J]. Elektrotechnik and Informationstechnik, 2016, 133(6):253-260.


 


[10]范彬, 潘晴.基于定量反馈理论的液压机驱动系统复合鲁棒控制[J].工程科学与技术,2016,48(5):186-191.


 


Fan B, Pan Q. Hybrid robust control for drive system of hydraulic press machine based on QFT [J]. Advanced Engineering Science, 2016,48(5):186-191.


 


[11]He Y D, Wang J Z, Li J, et al. Trajectory synchronization of multicylinder electrohydraulic lift system with huge load[J]. Journal of Beijing Institute of Technology, 2013, 22(2):228-234.


 


[12]杨彦琳. 电液比例阀控四缸同步的控制算法研究[D].兰州:兰州理工大学,2019.


 


Yang Y L. Research on Control Algorithm of Electrohydraulic Proportional Valve Control Fourcylinder Synchronization [D]. Lanzhou: Lanzhou University of Technology, 2019.


 


[13]韩金运. 基于模糊滑模算法的四缸等温锻造液压机同步控制方法研究[D].合肥:合肥工业大学,2017.


 


Han J Y. Research on Synchronous Control Method of FourCylinder Isothermal Forging Hydraulic Press Based on Fuzzy Sliding Mode Algorithm [D]. Hefei: Hefei University of Technology, 2017.


 


[14]田野, 蔡远利.一种新型变指数幂次趋近律的设计与分析[J].中国惯性技术学报,2019,27(2):241-247.


 


Tian Y, Cai Y L. A new variable power reaching law for sliding mode control [J]. Journal of Chinese Inertial Technology, 2019,27(2):241-247.


 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9