网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti55钛合金管电辅助加热气压胀形圆角填充成形规律及多场耦合数值模拟
英文标题:Fillet filling law and multi-field coupling numerical simulation of Ti55 titanium alloy pipe in electric assisted heating bulging
作者:张宇翔 汤泽军 许爱军 狄旭东 惠鹏程 王子涵 
单位:南京航空航天大学 北京卫星制造厂有限公司 
关键词:Ti55钛合金 电辅助加热 圆角填充 多场耦合 胀形 
分类号:TG316
出版年,卷(期):页码:2021,46(4):112-120
摘要:

利用ABAQUS仿真软件,采用间接顺序耦合的方式,建立了Ti55钛合金管电辅助加热气压胀形过程的电-热-力多场耦合有限元模型。通过多场耦合有限元分析和力学分析,研究了Ti55钛合金管电辅助加热气压胀形过程中的圆角填充规律。结果表明:当模型的节点电流密度为14 A·mm-2时,圆管壁厚最大减薄率仍然出现在过渡区;但当电流密度提高至15 A·mm-2后,圆管圆角处的温度进一步上升至750 ℃,直边部分因贴模降温,由温度分布结合力学分析可知,此时过渡区的成形压力大于圆角处的成形压力,因此,圆管壁厚最大减薄处由过渡区转移至圆角部分。该成形方法对圆管直角部分的贴模程度有较大改善,提高了Ti55钛合金管圆角填充的成形精度,并解决了直边过渡区最易形变并先于圆角区发生破裂的问题,充分利用了材料的成形性能。

The finite element model of electro-thermal-mechanical multi-field coupling for Ti55 titanium alloy pipe in the process of electric assisted heating bulging was established by simulation software ABAQUS and the indirect sequential coupling method, and the filling law of fillet for Ti55 titanium alloy pipe in the process of electric assisted heating bulging was studied by multi-field coupled finite element analysis and mechanical analysis. The results show that when the nodal current density of the model is 14 A·mm-2, the maximum thinning rate of wall thickness for pipe still appears in the transition zone. However, when the nodal current density increases to 15 A·mm-2 and the temperature at the fillet of pipe further increases to 750 ℃, the straight side part cools down because of sticking to die. According to the temperature distribution and mechanical analysis, the forming pressure in the transition zone is larger than the forming pressure at the fillet. Therefore, the maximum thinning rate of wall thickness for pipe is transferred from the transition zone to the fillet zone. Thus, the electric assisted heating bulging process greatly improves the degree of sticking to die at the right angle part of pipe, improves the forming accuracy of fillet filling for Ti55 titanium alloy pipe, solves the problem that the straight edge transition zone is the most easy to deform and crack before the fillet zone, and makes full use of material forming property.

基金项目:
装备预研领域基金(61409230408)
作者简介:
张宇翔(1997-),男,硕士研究生 E-mail:2444280763@qq.com 通讯作者:汤泽军(1981-),男,博士,副教授 E-mail:zjtang@nuaa.edu.cn
参考文献:


[1]Boyer R R. An overview on the use of titanium in the aerospace industry
[J]. Materials Science and Engineering A, 1996,213:103-114.



[2]Liu Z G, Li P J. Superplastic deformation behavior and cavity formation of Ti55 titanium alloy
[J]. Materials Science Forum,2018,913: 102-108.



[3]Koc M,Altan T. Prediction of forming limits and parameters in the tube hydroforming process
[J]. International Journal of Machine Tools and Manufacture, 2002, 42: 123-138.



[4]Yuan S, Song P, Wang X. Analysis of transition corner formation in hydroforming of rectangular-section tube
[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2011,225(5): 773-780.



[5]王东,李子然,昝祥.高温动态拉伸下NG TiAl弹塑性行为的数值模拟
[J].中国科学技术大学学报,2013,43(6):503-509.


Wang D, Li Z R, Zan X. Numerical simulation of elastoplastic behavior of NG TiAl under high temperature dynamic tension
[J]. Journal of China University of Science and Technology, 2013,43 (6): 503-509.



[6]叶建华,陈明和,王宁,等.基于修正JC模型的TA12钛合金高温流变行为
[J].中国有色金属学报,2019,29(4):733-741.


Ye J H, Chen M H, Wang N,et al. Rheological behavior of TA12 titanium alloy at high temperature based on modified JC model
[J]. The Chinese Journal of Nonferrous Metals,2019,29(4):733-741.



[7]Liu Z G, Li P J, Xiong L T, et al. High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy
[J]. Materials Science & Engineering A,2017,680(5):259-269.



[8]门正兴,周杰,王梦寒,等.电阻连续加热成形过程电热力耦合有限元模拟分析
[J].热加工工艺, 2010, 39(19):94-96,101.


Men Z X, Zhou J, Wang M H, et al. Electrothermal coupling finite element simulation and analysis of resistance continuous heating forming process
[J]. Hot Working Technology, 2010,39(19):94-96,101.



[9]刘钢,苑世剑,滕步刚.内高压成形矩形断面圆角应力分析
[J].机械工程学报,2006,42(6):150-155.


Liu G, Yuan S J, Teng B G. Stress analysis of rectangular section fillet corner in internal high pressure forming
[J]. China Mechanical Engineering,2006,42 (6):150-155.



[10]Liu K, Dong X, Xie H, et al. Effect of pulsed current on the deformation behavior of AZ31B magnesium alloy
[J]. Materials Science and Engineering: A, 2015, 623: 97-103.



[11]Magargee James, Morestin Fabrice, Cao J. Characterization of flow stress for commercially pure titanium subjected to electrically assisted deformation
[J]. Journal of Engineering Materials and Technology, 2013, 135(4):1245-1255.



[12]贾向东,袁荣娟,何留洋,等.高温变形条件下5A02铝合金的塑性成形性能
[J].稀有金属材料与工程,2020,49(7):2189-2197.


Jia X D, Yuan R J, He L Y, et al. Plastic deformation behavior of 5A02 aluminum alloy sheet at high temperature
[J]. Rare Metal Materials and Engineering,2020,49(7):2189-2197.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9