网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高强合金钢50SiMnVB动态再结晶模型研究
英文标题:Study on dynamic recrystallization model for high-strength alloy steel 50SiMnVB
作者:王凌浩 辛选荣 许丁 莫玉梅 
单位:广东理工学院 河南科技大学 洛阳秦汉精工股份有限公司 
关键词:热模拟压缩试验 50SiMnVB合金钢 高温热变形 金相组织 动态再结晶模型 
分类号:TG311
出版年,卷(期):页码:2021,46(2):218-225
摘要:
通过热模拟压缩试验研究了50SiMnVB合金钢在应变速率为0.01~10 s-1、温度为800~1000 ℃条件下的高温热变形行为。利用金相显微镜观察了合金压缩变形后的显微组织,结果表明:50SiMnVB合金钢在高温热变形过程中发生了典型的动态回复和动态再结晶行为,其中,动态再结晶以连续再结晶的形式进行,且应变速率越小、温度越高,越容易发生动态再结晶。根据试验结果,基于应变硬化率θ与流动应力σ之间的关系,确定了50SiMnVB合金钢高温热变形动态再结晶的临界应变;采用线性回归拟合建立了包括临界应变方程、峰值应变方程以及体积分数方程的50SiMnVB合金钢的高温变形动态再结晶模型,经对比分析发现,该模型能较好地预测合金钢高温热变形动态再结晶的体积分数;建立了50SiMnVB合金钢高温热变形动态再结晶晶粒尺寸模型。
The high temperature thermal deformation behavior of 50SiMnVB alloy steel under the strain rates of 0.01-10 s-1 and the temperatures of 800-1000 ℃ was studied by thermal simulation compression test, and the microstructure of alloy after compression deformation was observed by metallographic microscope. The results show that 50SiMnVB alloy steel has typical dynamic recovery and dynamic recrystallization behaviors during the high temperature thermal deformation process, and the dynamic recrystallization takes place in the form of continuous recrystallization. The smaller the strain rate is and the higher the temperature is, the easier the dynamic recrystallization occurs. According to the test results, based on the relationship between strain hardening rate θ and flow stress σ, the critical strain for dynamic recrystallization of 50SiMnVB alloy steel during the high temperature thermal deformation process was determined, and the dynamic recrystallization model of 50SiMnVB alloy steel during the high temperature deformation including critical strain equation, peak strain equation and volume fraction equation was established by linear regression fitting. The comparative analysis shows that the model can better predict the volume fraction of dynamic recrystallization for alloy steel during the high temperature thermal deformation. And the grain size model of dynamic recrystallization for 50SiMnVB alloy steel during high temperature thermal deformation was established.
基金项目:
广东省普通高校特色创新类项目(2018KTSCX273);广东省普通高校青年创新人才类项目(2018KQNCX314);广东理工学院创新强校工程(GKJ2018003)
作者简介:
王凌浩(1988-),男,硕士,讲师,E-mail:WLHDLH@126.com
参考文献:
[1]许赵华, 李宏, 李淼泉. GH696合金动态再结晶模型[J].中国有色金属学报, 2017, 27(8): 1551-1562.
Xu Z H, Li H, Li M Q. Dynamic recrystallization model of GH696 superalloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(8): 1551-1562.
[2]Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review[J]. Materials Science and Engineering A, 1997, 238: 219-274.
[3]许丁, 辛选荣. 合金钢50SiMnVB高温力学性能研究[J]. 热加工工艺, 2015, 44(10): 110-112.
Xu D, Xin X R. Research on high temperature mechanical properties of 50SiMnVB alloy steel[J]. Hot Working Technology, 2015, 44(10): 110-112.
[4]常列珍, 潘玉田, 张治民, 等. 一种调质50SiMnVB钢Johnson-Cook本构模型的建立[J]. 兵器材料科学与工程, 2010, 33(4): 68-72.
Chang L Z, Pan Y T, Zhang Z M, et al. Johnson-Cook constitutive model for hardened and tempered 50SiMnVB steel[J]. Ordnance Material Science and Engineering, 2010, 33(4): 68-72.
[5]董瀚, 李桂芬, 陈南平. 高强度50SiMnVB钢的动态变形行为[J]. 材料科学与工艺, 1996,4(2): 16-19.
Dong H, Li G F, Chen N P. Dynamic tensile behavior of high strength 50SiMnVB steel[J]. Material Science & Technology, 1996, 4(2): 16-19.
[6]张玮, 陈炯. 50SiMnVB钢圆筒在爆炸载荷作用下断裂行为研究[J]. 兵器材料科学与工程, 2004, 27(5): 31-34.
Zhang W, Chen J. Study on fracture behavior of 50SiMnVB steel cylinder shell under explosive 1oad[J]. Ordnance Material Science and Engineering,2004, 27(5): 31-34.
[7]刘盼萍, 尹燕, 常列珍, 等. 正火态50SiMnVB钢Johnson-Cook本构方程的建立[J]. 兵器材料科学与工程, 2008, 32(1): 45-49.
Liu P P, Yin Y, Chang L Z, et al. Establishing of Johnson-Cook constitutive equation for normalized steel 50SiMnVB[J]. Ordnance Material Science and Engineering, 2008, 32(1): 45-49.
[8]杨胜利, 沈健, 闫晓东, 等. 基于Al-Cu-Li合金流变行为的动态再结晶动力学与形核机制[J]. 中国有色金属学报, 2016, 26(2): 365-374.
Yang S L, Shen J, Yan X D, et al. Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 365-374.
[9]张佩佩, 隋大山, 齐珂, 等. 316LN钢高温流动应力与动态再结晶模型[J]. 塑性工程学报, 2014, 21(1): 44-51.
Zhang P P, Sui D S, Qi K, et al. Modeling of flow stress and dynamic recrystallization for 316LN steel during hot deformation[J]. Journal of Plasticity Engineering, 2014, 21(1): 44-51.
[10]孔晓寒, 陈慧琴, 刘建生, 等. 铸态Q345E钢的本构方程及动态再结晶行为[J]. 锻压技术, 2020, 45(11): 199-204.
Kong X H, Chen H Q, Liu J S, et al. Constitutive equation and dynamic recrystallization behavior for as-cast Q345E steel[J]. Forging & Stamping Technology, 2020, 45(11): 199-204.
[11]朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
Zhu H C, Luo J M, Zhu Z S. Dynamic recrystallization behavior and transformation mechanism in β-phase region of TB17 titanium alloy[J]. Journal of Materials Engineering, 2020, 48(2): 108-113.
[12]Madej L, Sitko M, Pietrzyk M. Perceptive comparison of mean and full field dynamic recrystallization models[J]. Archives of Civil & Mechanical Engineering, 2016, 16(4):569-589.
[13]Zhanna Y, Andrey B, Rustam K. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K[J]. Acta Materialia, 2015, 82(1): 244-254.
[14]Khan A S, Suh Y S, Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. International Journal of Plasticity, 2004, 20(12): 2233-2248.
[15]秦国友. 定量金相[M]. 成都: 四川科学技术出版社, 1987.
Qin G Y. Quantitative Metallography[M]. Chengdu: Sichuan Science and Technology Press, 1987.
[16]马炜杰, 杨西荣, 罗雷, 等. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
Ma W J, Yang X R, Luo L, et al. Dynamic recrystallization model of ultrafine grain pure titanium prepared by combined deformation process[J]. Chinese Journal of Materials Research, 2020, 34(3): 217-224.
[17]Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003, 43(5): 684-691.
[18]Poliak E I, Jonas J J. A one-parmenter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136.
[19]Zhang P, Cen Y, Chen G, et al. Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy[J]. Metals, 2016, 6(7): 161-179.
[20]陈天安, 陈学文, 周会军, 等. 45Cr4NiMoV钢动态再结晶模型研究[J]. 热加工工艺, 2015, 44(8): 50-53.
Chen T A, Chen X W, Zhou H J, et al. Dynamic recrystallization model for 45Cr4NiMoV steel[J]. Hot Working Technology, 2015, 44(8): 50-53.
[21]Avrami Melvin. Kinetics of phase change.II transformation-time relations for random distribution of nuclei[J]. Journal of Chemical Physics, 1940, 8(2): 212-224.
[22]Serajzadeh S, Taheri A K. Prediction of flow stress at hot working condition[J]. Mechanics Research Communications, 2003, 30(1): 87-93.
[23]Kim S I, Lee Y, Lee D L, et al. Modeling of AGS and recrystallized fraction of microalloyed medium carbon steel during hot deformation[J]. Materials Science & Engineering A, 2003, 355(1-2): 384-393.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9