网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TA2纯钛板的成形极限
英文标题:Forming limit on TA2 titanium sheet
作者:阎昱 易海佳 莫莉花 门明良 
单位:北方工业大学 
关键词:TA2纯钛板 Nakizima胀形试验 成形极限图 板料成形 成形极限预测 
分类号:TG146.23
出版年,卷(期):页码:2021,46(1):43-49
摘要:

 为了探究TA2纯钛板的成形极限,通过电化学腐蚀方法印制网格,在室温下使用BCS-50AR板材试验机分别对厚度为0.5和0.8 mm的TA2纯钛板进行了Nakizima胀形试验。通过网格分析系统采集网格的畸变,获得材料的主、次应变,并绘制了TA2纯钛板在室温下的成形极限图。根据单位体积塑性功相等的原理改进了Hill48屈服准则,并求出了TA2纯钛板对应的各向异性系数。将MK失稳准则和改进的Hill48屈服准则相结合,对TA2纯钛板的成形极限进行了理论预测,理论预测结果与试验结果基本吻合,但整体略低于试验结果。所做研究对于今后板料成形极限的研究提供了重要的研究方法,并且对实际生产具有着重要的工程应用价值。

 

 In order to explore the forming limit of TA2 titanium sheet, the grid was printed by electrochemical etching method, and the Nakizima bulging test was conducted on TA2 titanium sheet with the thickness of 0.5 and 0.8 mm respectively by BCS-50AR sheet tester at room temperature. Then, the primary and secondary strains of material were obtained by the grid analysis system to collect the mesh distortion, and the forming limit diagram of TA2 titanium sheet at room temperature was drew. Based on the principle of equal plastic work per unit volume, the yield criterion Hill48 was improved, and the anisotropy coefficient of TA2 titanium sheet was obtained. Furthermore, the forming limit of TA2 titanium sheet was theoretically predicted by combining the instability criterion M-K and improved yield criterion Hill48, and the theoretical prediction results were basically consistent with the experimental results, but the overall result was slightly lower than that of the experimental simulation. Thus, the research provides an important research method for the forming limit of sheet in the future and has important engineering application value for the actual production.

基金项目:
基金项目:国家自然科学基金资助项目(51475003);北京市自然科学基金-北京市教委联合资助项目(KZ202010009014);北京市属高等学校青年拔尖人才培育计划(CIT&TCD201704014)
作者简介:
作者简介:阎昱(1983-),女,工学博士,副教授 E-mail:anneyan@126.com
参考文献:

 [1]肖桂枝, 张津,张聪惠,等.超声冲-滚工业纯钛焊接接头表面性能研究[J].稀有金属,2019,43(9):959-966.


Xiao G Z, Zhang J, Zhang C H, et al. Surface performance of ultrasonic impactrolling commercial titanium welded joints[J]. Chinese Journal of Rare Metals, 2019,43(9):959-966.

[2]王清江, 刘建荣,杨锐.高温钛合金的现状与前景[J].航空材料学报,2014,34(4):1-26.

Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective[J]. Journal of Aeronautical Materials,2014, 34(4):1-26.

[3]陈明和, 高霖,王辉,等.板料成形极限应力图及其应用研究进展[J].中国机械工程,2005,(17):1593-1597.

Chen M H, Gao L, Wang H, et al. Research progresses on sheet metal forming limit stress diagram[J]. China Mechanical Engineering,2005,(17):1593-1597.

[4]高铁军, 刘青,蔡晋,等.复杂形状TA2钛合金半管件黏性介质压力成形[J].中国有色金属学报,2016,26(4):790-796.

Gao T J, Liu Q, Cai J, et al. Viscous pressure forming of semipipe parts of complex shape TA2 titanium alloy[J]. The Chinese Journal of Nonferrous Metals,2016,26(4):790-796.

[5]白雪飘, 王耀奇,侯红亮,等.Ti6Al4V钛合金热成形极限图及其应用[J].塑性工程学报,2013,20(3):102-105.

Bai X P, Wang Y Q, Hou H L, et al. Forming limit diagram and its application for Ti6Al4V alloy sheet at elevated temperature[J] Journal of Plasticity Engineering,2013,20(3):102-105.

[6]Keeler S P, Backofen W A. Plastic instability and fracture in sheets stretched over rigid[J]. Punches Trans. ASM, 1965, 56: 25-48.

[7]Goodwin G M. Application of strain analysis to sheet metal forming problem s in the press shop[J]. Transactions Society of Automotive Engineering, 1968,115:256-258.

[8]梁鹏飞, 陈拂晓,郭俊卿,等.TA1纯钛板成型极限图测定及应用[J].塑性工程学报,2017,3(1): 114-119.

Liang P F, Chen F X, Guo J Q, et al. Determination and application of forming limit diagram for pure titanium TA1 sheet[J]. Journal of Plasticity Engineering, 2017, 3(1): 114-119.

[9]邢秋丽, 彭湃,张嫦娟,等.钛及钛合金板材拉深成形的影响因素与技术进步[J].钛工业进展,2015,32(4):1-7.

Xing Q L, Peng P, Zhang C J, et al. Influencing factors and technology advances of titanium alloy plate in deep drawing[J]. Titanium Industry Progress, 2015, 32(4):1-7.

[10]Tetsuro O, Yoshikazu K. Analysis of earring in circularshell deepdrawing of BCC and HCP sheet metals[J]. Procedia Engineering, 2014, 81: 887-892.

[11]梁炳文, 陈孝戴,工志恒.板金成形性能[M].北京:机械工业出版社,1999.

Liang B W, Chen X D, Gong Z H. Formability of Sheet Metal [M]. Beijing: China Machine Press, 1999.

[12]肖景容, 姜奎华.冲压工艺学[M].北京:机械工业出版社,1999.

Xiao J R, Jiang K H. Stamping Technology [M]. Beijing: China Machine Press, 1999.

[13]GB/T 15825.8—1995, 金属薄板成形性能与试验方法成形极限图(FLD)试验[S].

GB/T 15825.8—1995, Sheet metal formability and test methods—Forming limit diagram (FLD) test[S].

[14]谭红, 刘新民,连建设,等.板材成形极限的预测研究[J].农业机械学报,1997,(4):158-162.

Tan H, Liu X M, Lian J S, et al. Prediction for the forming limit of sheet metals[J]. Transactions of the Chinese Society for Agricultural Machinery, 1997, (4):158-162.

[15]詹从堃, 陈志永,唐林.退火纯钛板压缩力学性能的各向异性[J].中南大学学报:自然科学版,2012,43(11):4253-4258.

Zhan C K, Chen Z Y, Tang L. Anisotropy of compressive mechanical properties of annealed pure titanium sheet[J]. Journal of Central South University: Science and Technology,2012,43(11):4253-4258.

[16]张小明. 纯钛板冲压成形性和各向异性的研究[J].稀有金属快报,2005,(4):38-39.

Zhang X M. Study on formability and anisotropy of pure titanium sheet[J]. Rare Metals Letters,2005,(4):38-39.

[17]王海波, 万敏,阎昱,等.参数求解方法对屈服准则的各向异性行为描述能力的影响[J].机械工程学报,2013,49(24):45-53.

Wang H B, Wan M, Yan Y, et al. Effect of the solving method of parameters on the description ability of the yield criterion about the anisotropic behavior[J]. Journal of Mechanical Engineering, 2013, 49(24):45-53.

[18]Marciniak Z, Kuczynski K. Limit strain in the processes of stretchforming sheet metal[J]. Int. J. Mech. Sci., 1967,9:609-620.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9