网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2219铝合金构筑成形工艺实验与界面愈合规律
英文标题:Additive forming process experiment and interface healing law for 2219 aluminum alloy
作者:程喆 钱东升 邓加东 
单位:武汉理工大学 现代汽车零部件技术湖北省重点实验室 湖北省材料绿色精密成形工程技术研究中心 
关键词:2219铝合金 构筑成形 热压缩 界面愈合 力学性能 
分类号:TG319
出版年,卷(期):页码:2020,45(12):171-177
摘要:

针对大型铝合金锻件组织性能调控难题,提出小尺寸坯料单元以在真空扩散预连接后进行热变形并保温的构筑成形方法制备大型铝合金锻件。通过对2219铝合金材料进行构筑成形工艺实验,研究不同变形量与压后保温时间对构筑界面愈合的影响,其中变形温度为460 ℃,变形量为10%、30%和50%,保温时间为0~4 h。结果表明:随着变形量由10%提升至50%,构筑界面由细长的缝隙演变为细小的孔洞,并最终实现完全愈合;在压后保温处理过程中,界面处氧元素存在由界面向基体处扩散的行为;其力学性能也随着变形量和压后保温时间的增加逐渐提高,并可达到与基体材料力学性能相当的水平。

For the problem of regulating the microstructure and properties of large aluminum alloy forgings, an additive forming method was proposed to form large aluminum alloy forgings by thermal deformation and thermal preservation after vacuum diffusion pre-connection of small-size blank units, and the influences of different deformation amounts and holding times after pressing on the interface healing were studied by additive forming process experiments of 2219 aluminum alloy material with the deformation temperature of 460 ℃, the deformation amounts of 10%, 30% and 50%, and the holding time of 0-4 h. The results show that with the increasing of deformation amount from 10% to 50%, the interface changes from a narrow gap to a small hole and finally achieves healing completely, and the oxygen element at the interface diffuses from the interface to the base material in the process of heat holding after pressing. In addition, its mechanical properties also gradually increase with the increasing of deformation amount and holding time, and finally reach a level equivalent to the mechanical properties of base material.

基金项目:
国家重点研发计划项目(2018YFA0702905);国家自然科学基金资助项目(51805391);教育部创新团队发展计划项目(IRT_17R83);中央高校基本科研业务费专项资金资助(2019IVA027)
作者简介:
程喆(1992-),男,硕士研究生 E-mail:whutchengzhe@163com 通讯作者:邓加东(1988-),男,博士,讲师 E-mail:dengjd88@126com
参考文献:


[1]龚习, 王恒强, 付敏敏, 等.航空航天用 AlCuMn 系高强铝合金的研究进展
[J]. 热加工工艺, 2015, 44(22):6-10.


Gong X, Wang H Q, Fu M M, et al. Research development of highstrength AlCuMn series aluminum alloy used for aviation and areospace
[J]. Hot Working Technology, 2015, 44(22):6-10.



[2]王喜琴, 张贵一, 乐斌, 等. 固溶处理工艺对2219铝合金力学性能的影响
[J]. 上海航天, 2019, 36(5):133-138.


Wang X Q, Zhang G Y, Le B, et al. Effects of solution treatment on mechanical properties of 2219 aluminum alloy
[J]. Aerospcae Shanghai, 2019, 36(5):133-138.



[3]潘复生, 张丁非. 铝合金及应用
[M]. 北京: 化学工业出版社, 2006.


Pan F S, Zhang D F. Aluminum Alloy and Its Application
[M]. Beijing: Chemical Industry Press, 2006.



[4]邓文卫, 易幼平, 湛利华, 等. 大型铝合金航空模锻件局部加载成形工艺研究
[J]. 热加工工艺, 2011,40(11):37-39,42.


Deng W W, Yi Y P, Zhan L H, et al. Research on local loading process of large Alalloy air die forgings
[J]. Hot Working Technology, 2011,40(11):37-39,42.



[5]周杨, 朱春雷. 铸件薄壁尺寸效应的研究成果
[J]. 大型铸锻件, 2011,(3):44-47.


Zhou Y, Zhu C L. Casting thin size effect research achievements
[J]. Heavy Casting and Forging, 2011,(3):44-47.



[6]阳代军, 徐坤和, 丁鹏飞, 等. 2219铝合金大直径圆锭铸造性能分析及其改进措施
[J]. 航天制造技术, 2014,(6):5-9.


Yang D J, Xu K H, Ding P F, et al.Analysis and improvement measures on casting property of 2219 aluminium alloy large diameter round ingot
[J]. Aerospace Manufacturing Technology, 2014,(6):5-9.



[7]李殿中, 孙明月, 徐斌, 等. 金属构筑成形方法
[P]. 中国: 2015110274924,2015-12-31.


Li D Z, Sun M Y, Xu B, et al. Metal construction forming method
[P]. China:2015110274924,2015-12-31.



[8]詹美燕, 李春明, 张卫文, 等. AZ31镁合金在累积叠轧焊过程中的界面焊合研究
[J]. 材料工程, 2012, (1):18-24.


Zhan M Y, Li C M, Zhang W W, et al. Interface bonding of AZ31 magnesium alloys during accumulative rollbonding
[J]. Journal of Materials Engineering, 2012, (1):18-24.



[9]Xie B J, Sun M Y, Xu B, et al. Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints
[J]. Materials & Design, 2018, 157:437-446.



[10]Bay N. Mechanisms producing metallic bonds in cold welding
[J]. Welding J,1983, 62 (5):137-146.



[11]Maeda M, Teshima S. A study on bonding mechanism of aluminum clad steel by cold rolling
[J]. TetsutoHagane, 2010, 61:957-962.



[12]周丽英. ODS钢构筑成形过程界面愈合机理研究
[D].合肥:中国科学技术大学, 2019.


Zhou L Y. Interface Healing Mechanism of Oxide Dispersion Strengthened Steels Produced by Additive Forging
[D]. Hefei: University of Science and Technology of China, 2019.



[13]李学朝. 铝合金材料组织与金相图谱
[M]. 北京:冶金工业出版社, 2010.


Li X Z. Microstructure and Metallography of Aluminum Alloy
[M]. Beijing: Metallurgical Industry Press, 2010.



[14]Xie B, Sun M, Xu B, et al. Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hotcompression bonding
[J]. Corrosion Science, 2019, 147:41-52.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9