网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
时效处理工艺对Mg-12Zn-2Ca合金组织与性能的影响
英文标题:Influence of aging treatment on microstructure and properties of Mg-12Zn-2Ca alloy
作者:王博 
单位:渤海船舶职业学院 
关键词:Mg-12Zn-2Ca合金 时效处理 硬度 等轴晶 第二相 
分类号:TG146.2
出版年,卷(期):页码:2020,45(9):177-180
摘要:

通过对Mg-12Zn-2Ca合金进行不同的T6处理(固溶+人工时效)工艺,并观察显微组织和测试布氏硬度,研究了时效处理工艺对Mg-12Zn-2Ca合金组织与性能的影响。试验结果表明:Mg-12Zn-2Ca合金在380 ℃下固溶20 h后,在180 ℃下进行不同时间的时效处理,随着时效时间的增加,合金的硬度值出现急剧上升,在时效12 h时达到阶段高点,之后在相对较小的区间波动,至96 h时达到最高点,随后出现明显回落。因此,Mg-12Zn-2Ca合金在380 ℃下固溶20 h后,在时效温度为180 ℃下的最佳时效时间为96 h,合金硬度到达最高值,为89.7 HBW,其组织为等轴晶α-Mg基体相以及在α-Mg相之间与α-Mg相内部弥撒分布着的Mg5Zn13Ca2与Mg6Zn3Ca2等第二相。

Mg-12Zn-2Ca magnesium alloy was conducted by different T6 treatment processes (Solution and artificial aging), and its microstructure and hardness were tested. Then, the influences of aging treatment process on microstructure and properties of Mg-12Zn-2Ca alloy were studied. The results show that the hardness of Mg-12Zn-2Ca alloy increases sharply with the increasing of aging time when it is aging treated for different times after solid solution of 380 ℃×20 h, and it reaches the stage high point when aging for 12 h. After that, it fluctuates in a relatively small interval and reaches its highest point when aging for 96 h; then it drops significantly. Thus, when Mg-12Zn-2Ca alloy is treated under 380 ℃×20 h for solid solution and 180 ℃×96 h for aging, the hardness of alloy gets its maximum value of 89.7 HBW, and its microstructure is equiaxed α-Mg matrix phase and the second phases such as Mg5Zn13Ca2 and Mg6Zn3Ca2 which are distributed between α-Mg phase and inside α-Mg phase。

基金项目:
作者简介:
王博(1981-),男,硕士,副教授 E-mail:wangbo411@163.com
参考文献:


[1]张丁非, 齐福刚, 赵霞兵, 等. Mg-Zn系高强度镁合金的研究进展
[J]. 重庆大学学报, 2010, 33(11): 53-61.


Zhang D F, Qi F G, Zhao X B, et al. Research progresses of high strength Mg-Zn series alloys
[J]. Journal of Chongqing University, 2010, 33(11): 53-61.



[2]尚霞, 马利华. 不同FSP转速处理的车减震材料用Mg-Zn-Zr合金超塑性变形分析
[J]. 锻压技术, 2019, 44(6): 162-167.


Shang X, Ma L H. Superplastic deformation analysis on Mg-Zn-Zr alloy for vehicle shock-absorbing material with different FSP rotation speeds
[J]. Forging & Stamping Technology, 2019, 44(6): 162-167.



[3]Tu T, Chen X H, Chen J, et al. A high-ductility Mg-Zn-Ca magnesium alloy
[J]. Acta Metallurgica Sinica:English Letters, 2019, (1): 23-30.



[4]王敬丰, 刘青山, 马尧, 等. 微量Sr、Sn对Mg-Zn-Ca-Mn合金力学和腐蚀性能的影响
[J]. 表面技术, 2019, 48(3): 83-90.


Wang J F, Liu Q S, Ma Y, et al. Effect of trace Sr and Sn on mechanical and corrosion properties of Mg-Zn-Ca-Mn alloy
[J]. Surface Technolog, 2019, 48(3): 83-90.



[5]柴韶春, 孟奇, 杨润, 等. Y对Mg-Zn-Zr合金力学性能的影响
[J]. 特种铸造及有色合金, 2019, 39(7): 711-715.


Chai S C, Meng Q, Yang R, et al. Effects of alloying element Y content on mechanical properties of Mg-Zn-Zr alloy extrusion sheet
[J]. Special Casting & Nonferrous Alloys, 2019, 39(7): 711-715.



[6]冯宇飞, 宋义全, 安玥. Mg-Zn-Mn合金的铸态组织及耐腐蚀性
[J]. 金属热处理, 2016, 41(10): 29-33.


Feng Y F, Song Y Q, An Y. Microstructure and corrosion resistance of Mg-Zn-Mn alloy as-cast
[J]. Heat Treatment of Metals, 2016, 41(10): 29-33.



[7]孙艳芬, 赵清军. 锻压态AZ81镁合金的组织与性能
[J]. 锻压技术, 2018, 43(10): 43-46,51.


Sun Y F, Zhao Q J.Microstructure and properties of forging state AZ81 magnesium alloy
[J]. Forging & Stamping Technology, 2018, 43(10):43-46,51.



[8]刘艳辉, 毛红奎, 郝晓宇, 等. 铸造镁合金晶粒细化技术的研究进展
[J]. 热加工工艺, 2017, 46(3): 19-21,25.


Liu Y H, Mao H K, Hao X Y, et al. Research progress on grain refinement technology of cast magnesium alloy
[J]. Hot Working Technology, 2017, 46(3): 19-21,25.



[9]杨明波, 潘复生, 李忠盛, 等. 镁合金铸态晶粒细化技术的研究进展
[J]. 铸造, 2005, 54(4): 314-319.


Yang M B, Pan F S, Li Z S, et al. Research and development of the as-cast grain refinement technology of magnesium alloys
[J]. Foundry, 2005, 54(4): 314-319.



[10]惠忠涛, 闫明. 挤压变形对Mg-Zn-Zr合金组织与耐蚀性能的影响
[J]. 铸造技术, 2019, 40(2): 217-219,224.


Hui Z T, Yan M. Influence of extrusion deformation on microstructure and corrosion resistance of Mg-Zn-Zr alloy
[J]. Foundry Technology,2019, 40(2):217-219,224.



[11]杨玲, 侯华, 赵宇宏, 等. T4、T6处理对AZ80镁合金的强化作用
[J]. 热加工工艺, 2014, 43(24): 179-181.


Yang L, Hou H, Zhao Y H, et al. Strengthening effect of heat treatment on AZ80 alloy
[J]. Hot Working Technology, 2014, 43(24): 179-181.



[12]Sk Wasiur Rahman. Thermodynamic Modeling of the (Mg, Al)-Ca-Zn Systems
[D]. Montreal, Quebec, Canada: Concordia University,2008.

 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9