网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
C194铜合金轧制冷塑性变形有限元模型的建立
英文标题:Establishment of finite element model for cold plastic deformation of C194 copper alloy in rolling
作者:张丹丹 宋克兴 皇涛 张学宾 侯文武 霍华 钟建英 
单位:河南科技大学 铜陵金威铜业有限公司 平高集团有限公司 
关键词:C194铜合金 本构方程 轧制 冷塑性变形 
分类号:TG339
出版年,卷(期):页码:2020,45(3):159-165
摘要:

以C194铜合金为研究对象,利用Gleeble-1500D热模拟试验机进行了室温单向拉伸实验,获得了应变速率分别为0.01,0.1,1和10 s-1的应力-应变曲线,构建了C194铜合金室温本构方程,验证了本构方程的准确性。基于Deform-3D有限元数值模拟平台,建立了C194铜合金轧制冷塑性变形有限元模型,并在相同工艺条件下进行了轧制变形实验,结果表明:除第5道次模拟结果与实验的厚度相对误差值为11%之外,其余误差值均小于10%,验证了轧制冷塑性变形有限元模型的可靠性和精确性。为研究C194铜合金板带变形规律及工艺优化奠定了基础。

For C194 copper alloy, the unidirectional tension test at room temperature was conducted by thermal simulator Gleeble-1500D, and the stress-strain curves were obtained under the strain rates of 0.01, 0.1, 1 and 10 s-1 respectively. Then, the constitutive equation of C194 copper alloy at room temperature was constructed, and the accuracy of the constitutive equation was verified. Furthermore, based on the finite element numerical simulation platform Deform-3D, the finite element model of cold plastic deformation for C194 copper alloy in the rolling was established, and the rolling deformation experiments were carried out under the same technological conditions. The results show that the relative error value of thickness for the fifth pass between the simulation and the experiment is 11%, and the remaining error values are less than 10%. Thus, the reliability and accuracy of the finite element model for rolling cold plastic deformation are verified to provide the basis for studying the deformation law and the process optimization of C194 copper alloy strip.

基金项目:
国家重点研发计划(2017YFB0306400);河南省杰出人才创新基金(182101510003);河南省创新型科技团队(C2015 0014)
作者简介:
张丹丹(1994-),女,硕士研究生 E-mail:1687669587@qq.com 通讯作者:宋克兴(1967-),男,博士,教授 E-mail:kxsong@haust.edu.cn
参考文献:


[1]魏佳佳,文九巴,贺俊光,等. 基于DEFORM-3D平台下的铝合金轧制裂纹预测研究
[J]. 塑性工程学报,2017,24(2): 93-98.


Wei J J,Wen J B,He J G,et al. Rolling crack prediction of aluminum alloy based on DEFORM-3D platform
[J]. Journal of Plasticity Engineering,2017,24 (2): 93-98.



[2]刘阳阳,文九巴,贺俊光. 5052铝合金室温轧制模拟与实验
[J]. 塑性工程学报,2018,25(5): 185-193.


Liu Y Y,Wen J B,He J G. Rolling simulation and experimental research of 5052 aluminum alloy at room temperature
[J]. Journal of Plasticity Engineering,2018,25(5):185-193.



[3]王蕊宁,高文柱,戚运莲,等. 有限元模拟在板材轧制中的应用
[J]. 中国材料进展,2009,28(4):56-60.


Wang R N,Gao W Z,Qi Y L,et al. Application of finite element simulation for plate rolling
[J]. Materials China,2009,28(4):56-60.



[4]张启航,苏娟华,张学宾,等. C19400铜板带可逆热轧有限元模型的建立及分析
[J]. 锻压技术,2019,44(12):11-19.


Zhang Q H,Su J H,Zhang X B,et al. Establishment and analysis on finite element model for C19400 copper strip in reversible hot rolling
[J]. Forging & Stamping Technology,2019,44(12):11-19.



[5]尹振入,卢立伟,盛坤,等. 有限元分析锥台转角对镁合金板材成形性的影响
[J]. 稀有金属,2018,42(5):470-476.


Yin Z R,Lu L W,Sheng K,et al. Finite element analysis of magnesium sheet formability with different frustum angles
[J]. Chinese Journal of Rare Metals,2018,42(5):470-476.



[6]Linghu K,Jiang Z,Zhao J,et al. 3D FEM analysis of strip shape during multipass rolling in a 6-high CVC cold rolling mill
[J]. The International Journal of Advanced Manufacturing Technology,2014,74(9-12):1733-1745.



[7]Hisaki W,Hidemitsu H,Shiichi N,et al. A 3D finite element simulation of cold roll forming of wrought magnesium alloy sheets
[J]. Applied Mechanics and Materials,2014,459:455-461.



[8]Misovic M,Tadic N,Jacimovic M,et al. Deformations and velocities during the cold rolling of aluminium alloys
[J]. Material in Technology,2016,50(1):59-67.



[9]Dong L L,Xing S Q,Ma Y L. The influence of work roller diameter on shape of strip in stainless steel cold strip rolling process with numerical simulation method
[J]. Advanced Materials Research,2012,538: 646-650.



[10]GB/T 228.1—2010,金属材料—拉伸实验—第1部分:室温试验方法
[S].


GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].



[11]邓学峰,张辉,陈振华. 耐热铝合金(FVS0812)板材温拉伸本构方程
[J]. 塑性工程学报,2006,13(3):83-87.


Deng X F,Zhang H,Chen Z H. Warm tensile constitutive equation of heatresistant aluminum alloy (FVS0812) sheet
[J]. Journal of Plasticity Engineering,2006,13(3):83-87.



[12]杨希英,郎利辉,刘康宁,等. 5A06-O铝镁合金板材温热成形本构方程研究
[J]. 精密成形工程,2015,(1):22-26,55.


Yang X Y,Lang L H,Liu K N,et al. Constitutive equation of 5A06-O aluminum magnesium alloy sheet in warm/hot forming
[J]. Journal of Netshape Forming Engineering. 2015,(1):22-26,55.



[13]张志,郎利辉,李涛,等. 高强度铝合金7804-T6板材温拉伸本构方程
[J]. 北京航空航天大学学报,2009,35(5):600-603.


Zhang Z,Lang L H,Li T,et al. Constitutive equation of high strength aluminum alloy sheet 7804-T6 under warm tension
[J]. Journal of Beijing University of Aeronautics and Astronautics,2009,35(5):600-603.



[14]Fields D S,Bachofen W A. Determination of strain hardening characteristics by torsion testing
[J]. Proc. Soc. Test. Mater.,1957,57:1259-1272.



[15]韩伟,吕彩琴,张翼. 7804-T6铝合金板材温拉伸流变应力研究
[J]. 腐蚀研究,2011,25(3):40-43.


Han W,Lyu C Q,Zhang Y. Flow stress of 7804-T6 aluminum alloy sheet during warm tensile
[J]. Corrosion Research,2011,25(3):40-43.



[16]李传民,王向丽,闫华军,等. DEFORM5.03 金属成形有限元分析实例指导教程
[M]. 北京: 机械工业出版社,2006


Li C M,Wang X L,Yan H J,et al. DEFORM5.03 Metal Forming Finite Element Analysis Example Guide
[M]. Beijing: China Machine Press,2006.



[17]Fluhrer J. DEFORM 3D Version 6.1 Users Manual
[M]. Ohio:Scientific Forming Technologies CorporationSFTC,2007.



[18]张莉,李升军. DEFORM在金属塑性成形中的应用
[M]. 北京: 机械工业出版社,2009.


Zhang L,Li S J. Application of DEFORM in Metal Plastic Forming
[M]. Beijing: China Machine Press,2009.



[19]朱琳. 高强IF钢冷轧过程中板形控制的数值模拟研究
[D]. 包头:内蒙古科技大学,2016.


Zhu L. Numerical Simulation Research on Flatness Control of High Strength IF Steel Cold Rolling Process
[D]. Baotou:Inner Mongolia University of Science & Technology,2016.



[20]杨阳. 板材冷轧成形过程的有限元法仿真
[D]. 南京:东南大学,2009.


Yang Y. Finite Element Method Simulation on Cold Rolling Process of Sheetstrip
[D]. Nanjing:Southeast University,2009.



[21]林坚. 不同轧制参数对冷轧薄板板形影响的研究
[D]. 沈阳:东北大学,2015.


Lin J. Effects of Different Rolling Parameters on Coldrolled Sheet Flatness
[D]. Shenyang:Northeastern University,2015.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9