网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
仪表阀体多向可控精密成形工艺
英文标题:Multi-directional controllable precision forming for instrument valve body
作者:刘光辉 刘华 王涛 汪金保  
单位:郑州机械研究所有限公司 
关键词:仪表阀体 多向可控精密成形 金属流动 载荷-行程曲线 摩擦系数 
分类号:TG314.3
出版年,卷(期):页码:2020,45(3):8-13
摘要:

提出一种新的仪表阀体的多向可控精密成形工艺,利用有限元模拟软件Deform-3D,对仪表阀体的多向可控精密成形工艺进行了数值模拟。分析了零件的工艺难点及成形过程中的载荷-行程曲线、金属流动规律及不同摩擦系数对成形过程的影响,最后进行了试验验证。研究结果表明,提出的仪表阀体多向可控精密成形新工艺是可行的,模拟得到的锻件充填饱满,在成形过程中金属流动比较均匀,金属流线基本沿锻件轮廓方向,最大载荷为6.21×106 N;此外,摩擦系数对成形过程的影响较大,工艺试验得到的产品和模拟结果具有较好的一致性,锻件尺寸一致性也较好,说明工艺可靠,对该类零件的多向可控精密成形工艺具有一定的指导意义。

A new multi-direction controllable precision forming process of instrument valve body was presented, and its precision forming process was numerically simulated by finite element simulation software Deform-3D. Then, the process difficulties of parts and  the load-stroke curve, the metal flowing rule during forming process and the influences of different friction coefficients on the forming process were analyzed. Finally, the experiment was conducted to validate the simulation results. The results show that the new multi-direction controllable precision forming of instrument valve body is feasible, the simulated forgings are full filled, the metal flowing is uniform during the forming process, the metal flowing line is basically along the contour of forgings, and the maximum load is 6.21×106 N. In addition, the friction coefficient has a great effect on the forming process, the products obtained from the experiment and the simulation results are consistent, and the sizes of forgings are consistent well. Thus, the process is reliable, which has certain directive significance to the multi-direction controllable precision forming process of this kind of parts.

基金项目:
郑州市科技重大专项资金(152PZDZX007)
作者简介:
刘光辉(1989-),男,硕士,工程师 E-mail:liu0406gh@163.com 通讯作者:刘华(1962-),男,博士,博士生导师,研究员 E-mail:13903832971@163.com
参考文献:


[1]陆培文.阀门制造工艺入门与精通
[M].北京:机械工业出版社,2010.


Lu P W. Introduction and Master of the Valve Manufacturing Process
[M]. Beijing: China Machine Press,2010.



[2]黄明亚.我国阀门行业的现状及发展趋势
[J].阀门,2002,(1):29-34.


Huang M Y. Present situation and tendency in development of Chinese valve industry
[J].Famen,2002,(1):29-34.



[3]孙丽,陈立龙.我国阀门行业现状与发展趋势
[J].机电工程,2009,26(10):103-104.


Sun L,Chen L L. Current situation and development trends of the valve industry in China
[J]. Mechanical & Electrical Engineering Magazine,2009,26(10):103-104.



[4]宋银立.我国阀门行业面临的形势和任务
[J].通用机械,2012,(7):22-24.


Song Y L.The situation and tasks of valve industry in China
[J]. General Machinery,2012,(7):22-24.



[5]秦晓兰,苏建龙,陈友方.国内外阀门开发现状比较分析
[J].技术与市场,2009,16(4):69-70.


Qing X L,Su J L,Chen Y F.Comparative analysis of the current situation of domestic and foreign valve development
[J]. Technology and Market,2009,16(4):69-70.



[6]任伟伟,徐春国,陈翔龙.铝合金控制臂多向挤压制坯及模锻成形工艺
[J].锻压技术,2018,43(8):110-116.


Ren W W,Xu C G,Chen X L. Process of multidirectional extrusion and die forging for control arm of aluminum alloy
[J].Forming & Stamping Technology,2018,43(8):110-116.



[7]李素丽,张治民.三通阀体零件多向主动加载成形过程数值模拟
[J].热加工工艺,2008,37(5):69-72.


Li S L,Zhang Z M. Numerical simulation of more active loading process of triple valve body
[J]. Hot Working Technology,2008,37(5):69-72.



[8]郭晓锋,杨合,孙志超,等. 三通件多向加载成形热力耦合有限元分析
[J]. 塑性工程学报,2009,16(4):85-90.


Guo X F,Yang H,Sun Z C,et al. Coupled thermalmechanical FEM analysis on multiway loading forming process of triple valve body
[J]. Journal of Plasticity Engineering,2009,16(4):85-90.



[9]裴文娇,郭训忠,王文涛,等.316L奥氏体不锈钢的高温流变行为
[J].塑性工程学报,2014,21(3):104-110.


Pei W J,Guo X Z,Wang W T,et al. Flow behaviors of 316L stainless steel at high temperature
[J].Journal of Plasticity Engineering,2014,21(3):104-110.



[10]宋仁伯,项建英,刘良元,等. 316L 不锈钢的热变形抗力模型
[J].机械工程材料,2010,34(6):85-89.


Song R B,Xiang J Y,Liu L Y,et al. Hot deformation resistance model of 316L stainless steel
[J].Materials for Mechanical Engineering,2010,34(6):85-89.



[11]石玉萍.1Cr13马氏体不锈钢热加工基础研究及锻造工艺模拟
[D].太原:太原科技大学,2013.


Shi Y P. Study on Basic Thermal Process of 1Cr13 Martensitic Stainless Steel and Forging Process Simulation
[D]. Taiyuan:Taiyuan University of Science and Technology,2013.



[12]刘丹.斜齿圆柱齿轮冷精密成形工艺及数值模拟研究
[D].北京:机械科学研究总院,2008.


Liu D. Research on Cold Precision Forming Process and Numerical Simulation of Helical Cylindrical Gear
[D].Beijing: Academy of Machinery Science & Technology,2008.



[13]胡建军,李小平.Deform-3D塑性成形CAE教程
[M].北京:北京大学出版社,2011.


Hu J J,Li X P.Deform-3D Plastic Forming CAE Application Tutorial
[M].Beijing:Peking University Press,2011.



[14]朱红亮,王广欣,陈学文,等. 导电杆冷锻成形数值模拟与工艺优化
[J].锻压技术,2019,44 (4):16-22.


Zhu H L,Wang G X,Chen X W,et al. Numerical simulation and process optimization on cold forging of conductive rod
[J].Forming & Stamping Technology,2019,44 (4):16-22.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-62920652 +86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备09032115号-5