网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻造操作机行走系统液压冲击振动及定位控制
英文标题:Hydraulic shock vibration and positioning control for forging manipulator walking system
作者:刘文广 冯婷 史青 张晓丽 何琪功 
单位:兰州兰石集团有限公司 甘肃省金属塑性成型装备智能控制重点实验室 甘肃省科学院 
关键词:锻造操作机 液压冲击 定位控制 切换控制 AMESim 
分类号:TH137
出版年,卷(期):页码:2019,44(12):99-103
摘要:

针对锻造操作机大车行走系统在停止时刻液压冲击振动噪声大、定位不准确等问题,分析产生液压冲击和定位不准的原因,建立了大车行走液压系统数学模型,提出在大车位移到达目标值精度范围临界点时,控制策略由PID控制切换为比例方向阀零控制信号,并在靠近行走液压马达进出油口背向并联二次溢流阀组,设置阻尼孔连通液压马达进出油口,通过AMESim平台进行仿真分析对比。结果表明:切换控制策略结合二次溢流阀组和连通阻尼孔的硬件补偿措施,可以隔离高压油源和快锻压机锻压工件的反作用力对大车行走马达的影响,有效降低操作机停止时刻液压冲击振动,提高系统阻尼比,加快液压冲击的衰减,提高大车定位精度。

For the problem of loud noise of  hydraulic shock vibration and inaccurate positioning for forging manipulator walking system at stopping time, the causes were analyzed, and the mathematical model of hydraulic system for cart walking was established. Then, the method for switching the control strategy from PID control to proportional directional valve zero control signal was proposed when the cart displacement reached the critical point of accuracy range of target value. Close to the inlet and outlet ports of walking hydraulic motor, the secondary relief valve group was back-to-parallel, and the damping hole was set between the inlet and outlet parts of the walking hydraulic motor. Furthermore, the simulation and comparison analysis were conducted by the platform AMESim. The results show that switching control strategy combined with the hardware compensation measures of the secondary relief valve group and the connecting damping hole can isolate the influence of high pressure oil source and reaction force of forging workpiece for fast forging press on the cart walking motor, reduce the hydraulic shock vibration effectively when the machine stops, improve the damping ratio of the system, speed up the attenuation of hydraulic impact, and improve the positioning accuracy of the cart.

基金项目:
作者简介:
刘文广(1990-),男,硕士,工程师 E-mail:lzleven@126.com
参考文献:


[1]傅新,徐明,王伟,等.锻造操作机液压系统设计与仿真
[J].机械工程学报, 2010,46(11):49-54.


Fu X, Xu M, Wang W, et al. Hydraulic system design and simulation of the forging manipulator
[J]. Journal of Mechanical Engineering, 2010,46(11):49-54.



[2]郑江. 锻造操作机电液比例位置控制系统研究
[D]. 武汉: 华中科技大学, 2003.


Zheng J. Research on Electro-hydraulic Proportional Control of Forging Manipulator
[D]. Wuhan:Huazhong University of Science and Technology, 2003.



[6]顾临怡, 王庆丰, 路甬祥. 液压驱动的大惯量负载加减速特性研究
[J]. 机械工程学报, 2002, 38(10): 46-49.


Gu L Y, Wang Q F, Lu Y X. Research on acceleration and deceleration characteristic for high inertia loads driven by hydraulics
[J].Chinese Journal of Mechanical Engineering, 2002, 38(10): 46-49.



[7]孔祥东,刘杰,翟富刚,等. 基于AMESim的锻造操作机大车行走液压控制系统仿真研究
[J]. 机床与液压, 2010,38(13):128-129.


Kong X D, Liu J, Zhai F G, et al. Simulation research on driving hydraulic control system of forging manipulator based on AMESim
[J]. Machine Tool & Hydraulics, 2010,38(13):128-129.



[8]李向阳,田富,闫周. 100 t锻造操作机行走驱动液压系统设计
[J]. 机床与液压, 2018, 46(16):48-51.


Li X Y, Tian F, Yan Z. Design of hydraulic system of 100 t forging manipulator driving parts
[J]. Machine Tool & Hydraulics, 2018, 46(16):48-51.



[9]郝晓蓓. 基于三角形速度规划的双锻造操作机大车行走同步控制方法
[D]. 秦皇岛: 燕山大学, 2018.


Hao X B. Synchronization Control on Walking Hydraulic System of Dual Forging Manipulators Based on Triangular Velocity Planning
[D]. Qinhuangdao:Yanshan University, 2018.



[10]Liu Z G, Yang G L, Wei L J, et al. Ariable speed and constant frequency control of hydraulic wind turbine with energy storage system
[J]. Advances in Mechanical Engineering, 2017,9(8):1-10.



[11]桑育鑫. 重载锻造操作机大车行走精度控制的研究
[D]. 兰州:兰州交通大学, 2017.


Sang Y X. Research on the Precision of Cart Movement Control of Heavy Load Forging Manipulator
[D]. Lanzhou: Lanzhou Jiaotong University, 2017.



[12]黄中华, 金波, 刘少军,等. 皮囊式蓄能器快速增压过程
[J]. 中南大学学报, 2006,37(2):306-310.


Huang Z H, Jin B, Liu S J, et al. Quick plenum process of bladder accumulator
[J]. Journal of Central South University, 2006,37(2):306-310.



[3]刘军毅,方秀荣. 大型锻造液压操作机钳架缓冲方法的研究
[J]. 现代制造工程, 2017, (3):145-149.


Liu J Y, Fang X R. The research of buffer method for the tong frame of large-scale forging hydraulic manipulator
[J]. Modern Manufacturing Engineering, 2017, (3):145-149.



[4]吴万荣, 秦伟业, 梁向京, 等. 大惯性负载液压系统启动冲击成因及控制
[J]. 噪声与振动控制, 2015,35(4):233-236.


Wu W R, Qin W Y, Liang X J, et al. The causes and control of startup impact of hydraulic systems with high inertia loads
[J]. Noise and Vibration Control, 2015,35(4):233-236.



[5]刘锋, 黄长征, 罗昕,等. 大惯量负载回转液压系统启制动平稳性的实验研究
[J]. 液压与气动,2017, (1):89-93.


Liu F, Huang C Z, Luo X, et al. Experimental study on start-up and braking stability for large inertia load slewing hydraulic system
[J]. Chinese Hydraulics & Pneumatics, 2017, (1):89-93.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9