网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝粉等通道挤压-正向挤压固结模拟及模具优化设计
英文标题:Consolidation simulation on equal channel angular pressing-forward extrusion for aluminum powder and mold optimization design
作者:王敏慧 游晓红 王录才 方超 范明玉 
单位:太原科技大学 
关键词:纯铝粉末 ECAP-FE  固结成形 热力耦合 模具结构 
分类号:TG376
出版年,卷(期):页码:2019,44(11):128-134
摘要:
等通道挤压-正向挤压(ECAP-FE)工艺可作为金属粉末固结的新工艺。针对纯铝粉末,采用Deform软件对ECAP-FE工艺进行热力耦合有限元模拟分析,剖析铝粉的固结行为。结果显示,ECAP-FE工艺对粉末多孔体具有强烈的致密效果,不同的模具参数对挤压变形的挤压成形力和等效应变均匀性存在不同程度的影响。研究结果表明,挤压比对挤压成形力影响显著,而模具模面角对等效应变均匀性影响较大。分析可得,当采用模具模面角为45°、过渡距离为20 mm、挤压比为6.25的模具结构参数进行组合挤压时,既可以降低挤压成形力,又能提高等效应变均匀性。通过研究分析为模具的设计和铝粉致密化提供了理论依据。
Equal channel angular pressing-forward extrusion (ECAP-FE) can be used as a new process for consolidation of metallic powders. For pure aluminum powder, the finite element simulation analysis on thermal mechanical coupling of ECAP-FE process was carried out by software Deform, and the consolidation behavior of aluminum powder was analyzed. The results show that the ECAP-FE process has a strong densification effect on the powder porous body, and the different mold parameters have various impacts on the extrusion force and equivalent strain uniformity of the extrusion deformation. It is shown that the influence of extrusion ratio on the extrusion force is significant, and the influence of die face angle on the equivalent strain uniformity is large. The analysis shows that when the combined extrusion is conducted by the mold structure parameters with the die face angle of 45°, the transition distance of 20 mm and the extrusion ratio of 6.25, the extrusion force reduces, and the equivalent strain uniformity improves. Thus, the above research and analysis provide a theoretical basis for the mold design and the aluminum powder densification.
基金项目:
山西省科技攻关项目(20140322-20); 国家级大学生创新创业项目(2018344)
作者简介:
王敏慧(1991-),女,硕士研究生,E-mail:wmh4742@163.com;通讯作者:游晓红(1965-),女,学士,教授,E-mail:283486490@qq.com
参考文献:
[1]李凌风,巩子天纵,李萍.纯铝粉末等径角挤压固结模拟及实验研究[J] . 精密成形工程,2014,6 (4):24-30.
Li L F,Gong Z T Z,Li P. Consolidation simulation and experimental research of pure aluminum powder materials during equal channel angular pressing[J]. Journal of Netshape Forming Engineering, 2014,6 (4):24-30.
[2]Valiev R Z,Islamgaliev R K,Alexandrov I V.Bulk nanostuctured materials from severe plastic deformation [J]. Progress in Materials Science,2000,45:103-189.
[3]施麒,马越,毛贺,等. 应用等径角挤压(ECAP)技术的金属粉末固结和碎屑回收研究现状[J] .材料导报,2017,31(7):88-93.
Shi Q,Ma Y,Mao H, et al. Metal powder consolidation and chip recycling using equal channel angular pressing:A review of current status[J]. Materials Review,2017,31(7):88-93.
[4]Matsuki K,Aida T,Takeuchi T, et al. Microstructural characteristics and super-plastic-like behavior in aluminum powder alloy consolidated by equal-channel angular pressing[J]. Acta Materialia,2000,48(10):2625-2632.
[5]Xia K,Wu X. Back pressure equal channel angular consolidation of pure Al particles[J]. Scripta Materialia,2005,53(11):1225-1229.
[6]Paydar M H,Reihanian M,Bagherpour E,et al. Equal channel angular pressing-forward extrusion (ECAP-FE) consolidation of Al particles[J]. Materials and Design,2009,30(3):429-432.
[7]周洁,陆建生,左孝青,等. 铝粉末压制过程有限元模拟研究[J].云南冶金,2005,34(5):45-49, 70.
Zhou J,Lu J S,Zuo X Q,et al. Finite element method simulation of aluminum powder compaction process[J]. Yunnan Metallurgy,2005,34(5):45-49, 70.
[8]Valiev R Z,Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in Materials Science,2006,51(7):881-981.
[9]Iwahashi Y,Wang J T,Horita Z,et al. Principle of equal channel angular pressing for the processing of ultra-fine grained materials[J]. Scripta Materialia,1996,35(2):143-146.
[10]Victor Spuskanyuk,Alexander Spuskanyuk,Victor Varyukhin. Development of the equal-channel hydroextrusion[J].Journal of Materials Processing Technology,2008,203(1-3):305-309.
[11]Nakshima K,Horita Z,Nemoto M,et al. Influence of channel angle on the development of ultra-fine grains in equal channel angular pressing[J]. Acta Materialia,1998,46(5):1589-1599.
[12]邬早勤,白朴存,张秀云,等. 模具外角和内角对等通道角挤压的影响的有限元分析[J].热加工工艺,2008,37(5):18-22, 25.
Wu Z Q,Bai P C,Zhang X Y,et al. Finite element analysis of influence of outer corner angle and channel angle on equal channel angula extrusion[J]. Hot Working Technology,2008,37(5):18-22, 25.
[13]沈冰,査五生,彭必友.面向应变均匀性和成形力的等径道角挤压模具结构参数优化[J].轻合金加工技术,2012,40(6):57-62.
Shen B,Zha W S,Peng B Y. Structural parameter optimization of equal channel angular extrusion die for strain homogeneity and deforming force[J]. Light Alloy Fabrication Technology,2012,40(6):57-62.
[14]周隐玉,刘芳,杜飞鹏.模具参数对纯钛等通道转角挤压工艺变形规律影响的有限元分析[J].材料与冶金学报,2014,13(1):66-70.
Zhou Y Y,Liu F,Du F P. Finite element analysis for effect of die parameters on deformation of equal channel angular pressing of pure titanium[J]. Journal of Materials and Metallurgy,2014,13(1):66-70.
[15]Basavaraj V P,Chakkingal U,Kumar T S P. Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation[J]. Journal of Materials Processing Technology,2009,209(1):89-95.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9