网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
一种减小铜底板弯曲度的冲压方法
英文标题:A punching method for reducing bending of copper base plate
作者:李磊 麻长胜 张敏 张正义 
单位:江苏宏微科技股份有限公司 
关键词:焊接变形 半逆解 热应力 冲压模具 铜底板 
分类号:TG115.25
出版年,卷(期):页码:2019,44(11):80-85
摘要:
为了解决IGBT(绝缘栅双极型晶体管)铜底板由于焊接热应力而发生的变形问题,以及提高预弯冲压模具的一次设计成功率、降低开发成本,提出一种结合仿真和半逆解理论的预弯冲压模具设计方法。具体做法为:首先将模具曲面特性数值化,并根据实验结果计算弧度损失基数,接着对材料相关参数进行修正;然后通过仿真模拟焊接过程,并拟合出单弧型特征曲线;最后结合弧度损失基数和引入的比例系数计算得到双弧型模具特征曲线,根据这些曲线即可设计出对应的模具曲面。此外,比例系数法的正确性已得到了验证,并通过仿真研究了此方法的效果,结果表明,可将焊接造成的铜底板在长度方向上的高度差从400 μm降低至77.4 μm。
In order to solve the deformation problem of IGBT (Insulated Gate Bipolar Transistor) copper base plate due to welding thermal stress and improve the design success rate of pre-bending stamping die as well as reduce the development costs, a design method of pre-bending stamping die based on simulation and semi-inverse solution theory was promoted. Then, the specific practices were as follows. Firstly, the curved surface characteristic of stamping die was digitized, and the arc loss base was calculated according to the experimental results. Next, the relevant physical properties of materials were corrected, and the single-arc characteristic curve was fitted by simulating the welding process. Finally, the double-arc characteristic curves were obtained by combining arc loss base and introducing proportional coefficient, and the corresponding curved surface of die was designed depending on the above curves. In addition, the validity of proportion coefficient was verified, and the effect of this method was studied by simulation. The result shows that the height difference of copper base plate in the length direction caused by welding is reduced from 400 μm to 74.4 μm。
基金项目:
省级科技专项资金(BA2016091)
作者简介:
李磊(1989-),男,硕士,E-mail:l_li@macmicst.com
参考文献:
[1]张炜. 高压绝缘栅双极晶体管(IGBT)的设计与实现[D]. 杭州:浙江大学, 2015.
Zhang W. Design & Fabrication of the Insulated Gate Bipolar Transistor(IGBT)[D]. Hangzhou: Zhejiang University, 2015.
[2]Kuhn S, Herrmann A, Hein J, et al. Sm3+-doped La2O3-Al2O3-SiO2-glasses: Structure, fluorescence and thermal expansion[J]. Journal of Materials Science, 2013, 48(22):8014-8022.
[3]Wei G Q, Liu H L, Du L C, et al. Effect of electromigration and isothermal aging on interfacial microstructure and tensile fracture behavior of SAC305/Cu solder joint[J]. China Welding, 2016, 25(3): 42-48.
[4]梁伟, 周亮, 孙晓露, 等. 采用固有应变法预测超薄板的焊接变形[J]. 焊接学报, 2017,38(3):103-106.
Liang W, Zhou L, Sun X L, et al. Prediction of welding deformation of super thin plate by inherent strain method[J]. Transactions of the China Welding Institution, 2017,38(3):103-106.
[5]王从思, 段宝岩, 仇原鹰. 变形面天线的分块Coons拟合方法[J]. 系统工程与电子技术, 2005, 27(11): 1822-1825.
Wang C S, Duan B Y, Qiu Y Y. Divided-fitting method for distorted surface of antenna based on Coons surface[J]. Systems Engineering and Electronics, 2005, 27(11): 1822-1825.
[6]Hunyadi L, Vajk I. Constrained quadratic errors-in-variables fitting[J]. Visual Computer, 2014, 30(12):1347-1358.
[7]Zhao Z, Wang C, Li M, et al. Nd:YAG laser surface treatment of copper to improve the wettability of Sn3.5Ag solder on copper[J]. Surface & Coatings Technology, 2005, 200(7):2181-2186.
[8]Garbatov Y, Soares C G, Parunov J, et al. Tensile strength assessment of corroded small scale specimens[J]. Corrosion Science, 2014, 85(1):296-303.
[9]Nguyen T T, Yu D, Park S B. Characterizing the mechanical properties of actual SAC105, SAC305, and SAC405 solder joints by digital image correlation[J]. Journal of Electronic Materials, 2011, 40(6):1409-1415.
[10]Che F X, Luan J E, Baraton X. Effect of silver content and nickel dopant on mechanical properties of Sn-Ag-based solders[A]. Proceedings of Electronic Components & Technology Conference [C]. Lake Buena Vista, FL, USA: IEEE, 2008.
[11]Kim J M, Lee H B, Chang Y S, et al. Derivation of mechanical characteristics for Ni/Au intermetallic surface;with SAC305 solder[J]. Metals & Materials International, 2013, 19(2):231-236.
[12]陈建群, 周万城, 韦萍. 电镀厚镍层的力学性能研究[J]. 热加工工艺, 2014, 43(4):123-125.
Chen J Q, Zhou W C, Wei P. Study on mechanical properties of thick electroplated nickel films[J]. Hot Working Technology, 2014, 43(4):123-125.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9