网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态316LN钢基于应变补偿的本构模型
英文标题:Constitutive model of cast 316LN steel based on strain compensation
作者:李景丹 刘建生 任树兰 
单位:太原科技大学 
关键词:应变补偿 本构模型 铸态316LN不锈钢 流动应力 Arrhenius模型 
分类号:TG316
出版年,卷(期):页码:2019,44(4):176-181
摘要:

采用Gleeble-1500D热模拟实验机,对铸态316LN不锈钢进行了高温压缩实验,根据铸态316LN不锈钢在变形温度为900~1200 ℃、应变速率为0.001~1 s-1、变形量为55%下的高温压缩实验结果可知,该材料的流动应力受变形温度、应变速率和应变的共同影响。因此,在传统Arrhenius本构模型基础上,引入了应变对流动应力的影响。通过五阶多项式描述了应变与材料参数的关系,建立了基于应变补偿法的铸态316LN不锈钢的本构模型。通过引入相关系数R、平均相对误差AARE,对该模型进行了评估,对比该模型的预测值与实验值的结果后得出,R值为0.995AARE值仅为4.48%,证明了采用修正后的模型预测该类材料的流动应力具有较高的精度。

 

The high temperature compression experiment of cast 316LN stainless steel was conducted by Gleeble-1500D thermal simulator. According to the high compression experiment results of cast 316LN stainless steel with deformation temperature of 900-1200 , strain rate of 0.001-1 s-1 and deformation amount of 55%, the flow stress of material was affected by deformation temperature, strain rate and strain. Therefore, based on the traditional Arrhenius constitutive model, the influence of strain on flow stress was introduced. Furthermore, the relationship between strain and material parameters was described by the fifth order polynomial, and the constitutive model of cast 316LN stainless steel based on strain compensation method was established. Finally, the model was evaluated by introducing correlation coefficient R and average relative error AARE. Comparing the predicted values of the model with the experimental values, the value of R is 0.995 and the value of AARE is only 4.48%, it is proved that the modified model has high accuracy in predicting the flow stress of this kind of material.

 

基金项目:
国家自然科学基金资助项目(51775361)
作者简介:
李景丹(1989-),女,博士研究生 E-mail:929949477@qq.com 通讯作者:刘建生(1958-),男,博士,教授,博士生导师 E-mail:jiansliu@163.com
参考文献:

[1]朱若林, 张利涛, 王俭秋, . 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1):54-61.


Zhu R L, Zhang L T, Wang J Q, et al. Stress corrosion crack propagation behavior of elbow pipe of nuclear grade 316LN stainless steel in high temperature high pressure water[J]. Journal of Chinese Society for Corrosion and Protection, 2018, 38(1): 54-61.


[2]Li X Q, Zhao J J, Xu J C, et al. Mechanical properties and defective effects of 316LN stainless steel by first-principles simulations[J]. Journal of Materials Science & Technology, 2011, 27(11):1029-1033.


[3]Xu D M, Li G Q, Wan X L, et al. Deformation behavior of high yield strength-high ductility ultrafine-grained 316LN austenitic stainless steel[J]. Materials Science and Engineering: A, 2017, 688:407-415.


[4]向大林, 辜荣如. CAP1400核电厂主管道112吨电渣锭研制[J]. 中国核电, 2013, 6(2):105-110.


Xiang D L, Gu R R. Development of 112 t ESR ingot for CAP1400 main pipe[J].China Nuclear Power,2013, 6(2):105-110.


[5]刘江林, 曾卫东, 谢英杰, . 基于应变补偿TC4-DT钛合金高温变形本构模型[J]. 稀有金属材料与工程, 2015, 44(11):2742-2746.


Liu J L, Zeng W D, Xie Y J, et al. Constitutive model of TC4-DT Titanium alloy at elevated temperature considering compensation of strain[J]. Rare Metal Materials and Engineering, 2015, 44(11):2742-2746.


[6]冯建铭, Eliane Giraud, 曹旭东, . 考虑应变补偿的Al2024合金本构方程研究[J]. 塑性工程学报, 2017, 24(6):151-156.


Feng J M, Eliane Giraud, Cao X D, et al. Study on constitutive equations of 2024 aluminum alloy considering the compensation of strain[J]. Journal of Plasticity Engineering, 2017, 24(6):151-156.


[7]陈学文, 王纳纳, 皇涛, . 超超临界转子用X12钢高温变形行为及基于应变补偿的本构模型[J]. 材料热处理学报, 2018, 39(5):134-139.


Chen X W, Wang N N, Huang T, et al. Hot deformation behavior of X12 steel for ultra-supercritical rotor and its constitutive model based on strain compensation[J]. Transations of Materials and Heat Treatment, 2018, 39(5):134-139.


[8]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


[9]任树兰, 刘建生, 李景丹, . 316 LNESR材料热变形行为及高温塑性本构方程[J]. 锻压技术, 2017, 42(10):162-165.


Ren S L, Liu J S, Li J D, et al. Thermal deformation behavior and high temperature plastic constitutive equation of ESR steel 316LN[J]. Forging & Stamping Technology, 2017, 42(10):162-165.


[10]罗锐, 程晓农, 徐桂芳, . 新型Fe-20Cr-30Ni-0.6Nb-2Al-Mo合金的热变形行为及本构模型[J]. 稀有金属, 2017, 41(2):132-139.


Luo R, Cheng X N, Xu G F, et al. Constitutive modeling for elevated temperature flow behavior of Fe-200Cr-30Ni-0.6Nb-2Al-Mo alloy[J]. Chinese Journal of Rare Metals, 2017, 41(2):132-139.


[11]陈刚, 陈伟, 马力, . Al-12Zn-2.4Mg-1.2Cu合金流变行为的应变补偿Arrhenius本构模型研究[J]. 稀有金属材料与工程, 2015, 44(9):2120-2125.


Chen G, Chen W, Ma L, et al. Strain-compensated Arrhenius-type constitutive model for flow behavior of Al-12Zn-2.4Mg-1.2Cu alloy[J]. Rare Metal Materials and Engineering, 2015, 44(9):2120-2125.


[12]朱洪军. 高强韧Ti6246合金热变形行为及应变补偿型本构模型[J]. 金属热处理, 2016, 41(8):184-188.


Zhu H J. Hot deformation behavior and strain compensation constitutive model of high strength and high toughness Ti6246 alloy[J]. Heat Treatment of Metals, 2016, 41(8):184-188.




 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9