网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不锈钢复合板轧制成形过程特性研究
英文标题:Study on characteristics of rolling process for stainless steel composite plate
作者:康庚 李玉贵 楚志兵 丁兆奇 王顺 
单位:太原科技大学 
关键词:304不锈钢 Q235低碳钢 复合板 轧制 本构方程 Deform-3D 
分类号:TG335
出版年,卷(期):页码:2019,44(1):34-42
摘要:

利用Gleeble-3800热模拟实验机研究了304不锈钢和Q235低碳钢复合板在变形温度950~1150 ℃、应变速率0.01~0.1 s-1条件下的热变形行为。为了描述高温流动特征,建立了不锈钢复合板的高温流变应力方程。由实验数据可知,流变应力随变形温度和应变速率变化明显,应变速率越大,变形温度越低,流变应力越大。应用Deform-3D有限元软件模拟了热轧不锈钢复合板在轧制过程中的变形特性,并对不同压下率下复合板厚度方向上的应力场、温度场和轧制力的分布规律进行了分析。结果表明:不锈钢复合板的表面应力最大,并由表层向内部逐渐减少;结合界面附近由于塑性功、热传导、热对流等综合因素,使得温度高于表面;通过实验测出的轧制力值与模拟值的变化趋势一致,且误差在15%左右,该模拟结果可为实际的生产提供参考。

The thermal deformation behaviors of composite plate for 304 stainless steel and Q235 low carbon steel at deformation temperature of 950-1150 ℃ and strain rate of 0.01-0.1 s-1 were studied by thermal simulation test machine Gleeble-3800, and the flow stress equation at high temperature of stainless steel composite plate was established to describe the high temperature flow characteristics. The experimental data show that the flow stress changes significantly with the change of temperature and strain rate, and the greater the strain rate and the lower the deformation temperature are, the greater the flow stress is. Then, the deformation characteristics of hot rolled stainless steel composite plate during the rolling process were simulated by finite element software Deform-3D, and the distribution of stress field, temperature field and rolling force in the thickness direction of the composite plate under different reduction rates were analyzed. The results show that the surface stress of the stainless steel composite plate is the largest and gradually decreases from the surface to the interior, and the temperature near the bonding interface is higher than that in the surface due to the plastic work, heat conduction, heat convection, and so on. Furthermore, the variation trend of the rolling force values measured by the test is consistent with the simulated values, and the error is about 15%. Thus, the simulation results can provide reference for the actual production.

基金项目:
国家自然科学基金资助项目(U1710113);国家联合基金重点项目(U1610256);山西省重点研发项目(201703D 111003);山西省重大专项(MC2016-01);中国博士后科学基金项目(2017M622903)
作者简介:
康庚 (1991-),男,硕士研究生,E-mail:congerat@163.com;通讯作者:李玉贵 (1967-),男,博士,教授,E-mail:liyugui2008@163.com
参考文献:

[1]Chen Z JNyirenda KChen Q Zet al. The effect of heat treatment technology on mechanical properties of Al/Al alloys multilayer sheet fabricated by hot roll bonding[A].Weiland HRollett A DCassada W A. The 13th International Conference on Aluminum Alloys[C]. John Wiley SonsIncHobokenNJ2012.


[2]马志新,李德富,胡捷,等. 包套轧制复合法制备TA1/LY12 复合板[J].金属成形工艺,200422(1): 34-36.


Ma Z XLi D FHu Jet al.TA1/LY12 plate manufactured by pack rolling clad[J].Metal Forming Technology200422(1): 34-36.


[3]黄庆学,李海斌,周存龙,等.复合板轧制压下率对碳钢组织及相变的影响[J].材料热处理学报,201435(3): 149-153.


Huang Q XLi H BZhou C Let al. Effect of reduction rate on microstructure and transformation behavior of carbon steel by rolling clad plate[J]. Transactions of Materials and Heat Treatment201435(3):149-153.


[4]王光磊,骆宗安,谢广明,等.首道次轧制对复合钢板组织和性能的影响[J].东北大学学报: 自然科学版,2012,33(10): 1431-1435.


Wang G L, Luo Z A, Xie G Met al. Effect of first pass rolling on microstructure and properties of rolling clad steel plate[J].Journal of Northeastern University: Natural Science201233(10): 1431-1435.


[5]熊家强,谢刚,唐广波.304不锈钢热变形过程奥氏体动态再结晶及流变应力研究[J].云南冶金,2008,37(5):37-42.


Xiong J Q, Xie G, Tang G B. Dynamic recrystallization and flow stress of austenite in hot deformation process of 304 stainless steel[J]. Yunnan Metallurgy, 2008,37(5):37-42.


[6]秦芳诚. 环件铸辗复合成形中 Q235B 钢热变形及组织演变研究[D].太原: 太原科技大学,2014.


Qin F C. Study on Hot Deformation and Microstructure Evolution of Q235B Steel in Ring Castingrolling Compound Forming[D]. Taiyuan: Taiyuan University of Science and Technology,2014.


[7]李红斌,田伟,郑明月,等. 基于高速等温压缩试验构建普碳钢考虑温度弹跳的热变形本构方程[J].机械工程材料,2014,38(3):102-108.


Li H B, Tian W, Zheng M Y, et al. Construction of thermal deformation constitutive equation of carbon steel considering temperature bouncing based on highspeed isothermal compression test[J].Mechanical Engineering Materials,2014,38(3):102-108.


[8]宗家富,张文志,许秀梅,等.双金属板热轧复合模拟及最小相对压下量的确定[J].燕山大学学报,200529(1):27-33.


Zong J F, Zhang W Z, Xu X M, et al, Simulation of hot rolling compound and determination of minimum relative reduction of bimetal sheet[J]. Journal of Yanshan University,2005,29(1):27-33.


[9]季晓鹏.多层不锈钢/ (合金) 复合板热轧工艺有限元数值模拟研究[D].西安: 西安建筑科技大学,2008.


Ji X P. FEM Simulation of Hotrolling Process for Multilayer Stainless Steel/Aluminum (Aluminum Alloy) Plates[D]. Xi′an: Xi′an University of Architecture and Technology,2008.


[10]侯英武.不锈钢复合板冷轧过程有限元模拟[D].秦皇岛:燕山大学,2003.


Hou Y W. Finite Element Simulation of Cold Rolling Process of Stainless Steel Composite Plate[D].Qinhuangdao: Yanshan University,2003.


[11]李世芸,张曙红,张代明.双金属复合带材轧制过程有限元模拟[J].中国有色金属学报,200111(6): 1075-1076.


Li S Y, Zhang S H, Zhang D M. Finite element simulation of rolling process of bimetal composite strip[J]. Chinese Journal of Nonferrous Metals,2001,11(6):1075-1076.


[12]王浩. 首道次压下率对不锈钢复合板结合率的影响及微观组织模拟[D].武汉:武汉科技大学,2016.


Wang H, The Effect of First Reduction Ratio on the Interfacial Bonding Rate of Stainless Steel Clad Plate and the Microstructure Simulation[D]. Wuhan: Wuhan University of Science and Technology,2016.


[13]王延溥, 齐克敏. 金属塑性加工学轧制原理[M]. 北京: 冶金工业出版社, 2001.


Wang Y F, Qi K M. Rolling Principle of Metal Plastic Processing[M]. Beijing: Metallurgical Industry Press,2001.


[14]韩万林.双金属轧制力计算方法的研究[J].上海金属,1983,4(1):23-28.


Han W L. Study on the calculation method of rolling force of bimetal[J]. Shanghai Metal,1983,4(1):23-28.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9