网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
选区激光熔化制备316L不锈钢镂空件实验研究
英文标题:Experimental study on preparation of 316L stainless steel
作者:潘露 刘麒慧 王亮 
单位:安徽机电职业技术学院 安徽拓宝增材制造科技有限公司 
关键词:选区激光熔化 尺寸精度 镂空结构 缺陷分析 316L不锈钢 
分类号:TN249;TF124
出版年,卷(期):页码:2018,43(9):103-107
摘要:
为研究选区激光熔化技术制备复杂金属零部件的最小结构尺寸和精度,设计了结构尺寸为0.3,0.4和0.5 mm的3种316L不锈钢金属镂空件,在具有完全自主产权的TB100激光选区熔化设备上进行实验,采用常规工艺参数(扫描间距为0.11 mm,扫描速度为640 mm·s-1,激光功率为160 W)制备3种样品,获得了产品尺寸精度和形状精度,借助于金相显微镜、扫描电镜等设备,分析了样品组织和缺陷形式。研究表明:在此工艺参数下,可以获得最小尺寸为0.3 mm的316L不锈钢镂空零件,产品尺寸精度误差为0.02 mm;样品内部结构孔隙、氢气孔和氮气孔多,存在严重的球化现象,改用氩气为保护气体可减少气泡缺陷。
In order to study the minimum structure size and precision of the complex metal parts produced by selective laser melting technology, three 316L stainless steel hollow parts with structure size 0.3,0.4 and 0.5 mm were designed, and the three hollow parts were manufactured by laser selective melting equipment TB100 with completely independent property rights. Then, the dimensional precision and shape precision of the product were obtained by traditional process parameters with scanning spacing 0.11 mm, scanning speed 640 mm·s-1 and laser power 160 W, and the sample organization and defects were analyzed by microscope and SEM. The results show that the 316L stainless steel hollow parts with the smallest size 0.3 mm can be manufactured by the above traditional parameters, and the error of product is 0.02 mm. However, there are many pores, hydrogen pores, nitrogen pores and serious spheroidization in the samples. Thus, the argon is chosen as a protective gas to reduce bubble defects.
基金项目:
安徽省重点研究与开发项目(1704a0902056);安徽省高校省级质量工程项目(2017mooc092);芜湖市科技成果转化项目(2018cg06)
作者简介:
潘露(1985-),男,硕士,讲师 E-mail:ahjdpanlu@126.com
参考文献:

[1]吴文恒,张亮,何贝贝,等.选择性激光熔化增材制造工艺过程模拟现状
[J].理化检验-物理分册,2016, 52(10):693-697.

Wu W H, Zhang L,He B B,et al. Current status of research on computer simulation of selective laser melting additive manufacturing process
[J]. Physical Testing & Chemical Analysis (Part A: Phys. Test.), 2016, 52(10):693-697.


[2]杨永强, 罗子艺, 苏旭彬,等. 不锈钢薄壁零件选区激光熔化制造及影响因素研究
[J]. 中国激光, 2011, 38(1):54-61.

Yang Y Q, Luo Z Y, Su X B, et al. Study on process and effective factors of stainless steel thin-wall parts manufactured by selective laser melting
[J]. Chinese Journal of Lasers, 2011,38(1):54-61.


[3]张博,李涤尘,曹毅.基于粉体熔化的选区激光熔化成形方向误差分析
[J].激光与光电子学进展,2017,54(1):1-7.

Zhang B, Li D C,Cao Y. Error analysis in formation direction of selective laser melting based on powder melting
[J]. Progress in Laser and Optoelectronics, 2017,54(1):1-7.


[4]王沛, 黄正华, 戚文军,等. 基于SLM技术的3D打印工艺参数对316不锈钢组织缺陷的影响
[J]. 机械制造文摘-焊接分册, 2016, (2):2-7.

Wang P, Huang Z H, Qi W J, et al. Effects of 3D printing process parameters based on SLM technology on microstructure defects of 316 stainless steel
[J]. Mechanical Manufacturing Abstracts—Welding Fascicles, 2016, (2): 2-7.


[5]邹亚桐, 魏正英, 杜军,等. AlSi10Mg激光选区熔化成形工艺参数对致密度的影响与优化
[J]. 应用激光, 2016, (6):656-662.

Zou Y T, Wei Z Y, Du J, et al. Effect and optimization of selected melting process parameters on density of AlSi10Mg laser selective melting forming
[J]. Appling Laser,2016, (6): 656-662.


[6]王黎.选择性激光熔化成形金属零件性能研究
[D].武汉:华中科技大学,2012.

Wang L. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Engineering
[D]. Wuhan: Huazhong University of Science and Technology, 2012.


[7]Gebhardt A, Schmidt F M, Htter J S, et al. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry
[J]. Physics Procedia, 2010, 5(4):543-549.


[8]Rehme O, Emmelmann C. Reproducibility for properties of selective laser melting products
[A].Proceedings of the Third International WLT-Conference on Lasers in Manufacturing
[C]. Munich, 2005.




[9]Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process
[J]. Applied Surface Science, 2007, 253(19):8064-8069.


[10]王迪.选区激光熔化成形不锈钢零件特性与工艺研究
[D].广州:华南理工大学,2011.

Wang D. Study on the Fabrication Properties and Process of Stainless Steel Parts by Selective Laser Melting
[D]. Guangzhou: South China University of Technology, 2011.


[11]李雅莉.选区激光熔化AlSi10Mg温度场及应力场数值模拟研究
[D].南京:南京航空航天大学,2015.

Li Y L. Numerical Investigation on Temperature Field and Stress Field during Selective Laser Melting of Al Si10Mg
[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2015.


[12]李瑞迪.金属粉末选择性激光熔化成形的关键基础问题研究
[D].武汉:华中科技大学,2010.

Li R D. Research Progress of Key Basic Issue in Selective Laser Melting of Metallic Powder
[D]. Wuhan: Huazhong University of Science and Technology, 2010.


[13]刘晓璇, 刘江波. 扫描方式对激光立体成形GH4169合金高温力学性能和热疲劳性能的影响
[J]. 锻压技术, 2017, 42(12):140-143.

Liu X X, Liu J B. Effect of scanning mode on high temperature mechanical properties and thermal fatigue properties of laser solid forming GH4169 alloy
[J]. Forging & Stamping Technology, 2017,42 (12): 140-143.


[14]李鹏, 刘斌. 空间网格状多孔316不锈钢的选区激光熔化制备
[J]. 热加工工艺, 2013, 42(8):50-52.

Li P, Liu B. Selective laser melting process of space gridded porous 316 stainless steel
[J]. Hot Working Technology, 2013,42(8):50-52.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9