网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Cu-Cr-Zr合金大功率电动机转子端环的锻造性能分析
英文标题:Forging formability analysis on Cu-Cr-Zr rotor end ring of high power motor
作者:毕彦 乔靖雯 马叙 丁燕红 
单位:天津中德应用技术大学 天津理工大学 天津市金属材料近净成形技术工程中心 
关键词:高强高导 铜铬锆合金 转子端环 热锻 Deform 
分类号:TG319
出版年,卷(期):页码:2018,43(9):14-20
摘要:
铜铬锆合金在高温环境下工作仍具有高强度、高导电率的特点,是目前大功率异步牵引电动机转子端环的最佳材料。以热锻成形的铜铬锆合金转子端环为研究对象,运用Deform软件进行模型数学计算,并进行实验验证,得到铜铬锆端环的最佳锻造方式。研究首先通过Gleeble热压缩实验建立Cu-Cr-Zr合金高温变形的材料数据库导入Deform-3D中,始锻温度设在750~800 ℃之间,锻造比为1.4,锻造方式分为两种,分别是一次成形和复合成形。模拟分析结果表明,铜铬锆合金锻造比为1.4时,始锻温度为790 ℃,终锻温度约在650~710 ℃之间,采用复合成形的方式会使试样受力、传热更为均匀,成形性更好并且对模具的损害也较小。
Cu-Cr-Zr alloy is the best material to produce rotor end ring of high-power asynchronous traction motor because of its high strength and high conductivity in high temperature environment. For Cu-Cr-Zr rotor end ring produced by hot forging, its model was calculated by software Deform and verified by experiment, and the optimal forging process of the rotor end ring was obtained. Then, the material database of high temperature deformation of Cu-Cr-Zr alloy was established by Gleeble hot compression test and imported into Deform-3D. In this simulation, the forging temperature was from 750 ℃ to 800 ℃ and the forging ratio was 1.4, and two kinds of forging methods of once-forming and the combined forming were adopted. The results show that when the forging ratio is 1.4 and the initial forging temperature is 790 ℃, the final forging temperatures are about 650~710℃, the specimen with combined forming bears more uniform force and heat transfer and has better formability and less damage to the mold.
基金项目:
国家自然科学基金资助项目(50975295);天津市自然科学基金重点项目(15JCZDJC38700);天津市自然科学基金项目(14JCYBJC16200)
作者简介:
作者简介:毕彦(1985-),男,硕士 E-mail:jy00898706@163.com 通讯作者:马叙(1971-),男,博士,副教授 E-mail: maxumax@163.com
参考文献:

[1]叶晓明,田佩福,母继正,等. 5000kW异步电动机紫铜端环锻造工艺改进
[J]. 东方电机,2006,(6):31-35.

Ye X M, Tian P F, Mu J Z, et al. Improvement of forging process for 5000kW asynchronous motor's copper end ring
[J]. Dongfang Electrical Machine, 2006, (6): 31-35.


[2]蒋牵,尹志民,宋练鹏,等. 电机转子铜合金导条与端环焊接热模拟研究
[J]. 湖南有色金属,2011,(7):26-28.

Jiang Q, Yin Z M, Song L P, et al. Thermal simulation study on welding of copper alloy guide bar and end ring of motor rotor
[J]. Hunan Nonferrous Metals, 2011, (7): 26-28.


[3]叶晓明. 交流电机T2紫铜整体端环自由锻造
[J]. 东方电机,2000,(5):105-126.

Ye X M. Free forging of integral end ring of AC motor T2 copper
[J]. Dongfang Electrical Machine, 2000, (5): 105-126.


[4]宋练鹏.轨道交通用牵引电动机转子铜合金部件制备及其相关基础研究
[D]. 长沙:中南工业大学,2008.

Song L P. Preparation and Related Basic Research of Traction Motor Rotor Copper Alloy Parts for Rail Transit
[D]. Changsha: Central South University of Technology, 2008.


[5]潘振亚. 高强高导 Cu-Cr-Zr合金组织和性能的研究
[D]. 上海:上海交通大学,2015.

Pan Z Y. Microstructure and Properties of Cu-Cr-Zr Alloy with High Strength and High Conductivity
[D]. Shanghai: Shanghai Jiao Tong University, 2015.


[6]张鑫,罗长军,姜韬,等. 纯铜端环整锻工艺的研究
[J]. 机械工人,2005,(1):93-94.

Zhang X, Luo C J, Jiang T, et al. Study on the whole process of end ring forging of pure copper
[J]. Metal Forming, 2005,(1): 93-94.


[7]李晓明,赵永华,杨秀玲,等. 大中型电动机转子结构设计及制造
[J]. 防爆电机,2010,45(6):14-16.

Li X M, Zhao Y H, Yang X L,et al. Design and manufacture of large and medium motor rotor structure
[J]. Explosion-Proof Electric Machine, 2010, 45(6): 14-16.


[8]林娜娜. 核电槽楔铜合金电真空冶金及成形工艺的研究
[D]. 镇江:江苏科技大学,2012.

Lin N N. Study on Electrovacuum Metallurgy and Forming Process of Copper Alloy for Nuclear Power Wedge
[D]. Zhenjiang: Jiangsu University of Science and Technology, 2012.


[9]辛选荣, 王乐伟, 贺成松. 高精度铜合金件的室温开式模锻技术
[J]. 锻压技术,2016,41(5):1-7.

Xin X R, Wang L W, He C S. Open die forging technology for high precision copper alloy parts at room temperature
[J]. Forging & Stamping Technology, 2016, 41(5): 1-7.


[10]朱磊, 张麦仓, 董建新,等. TC11合金本构关系的建立及其在盘件等温锻造工艺设计中的应用
[J]. 稀有金属材料与工程,2006,35(2):253-256.

Zhu L, Zhang M C, Dong X J,et al. Constitutive relation of TC11 alloy and its application in isothermal forging process design of disc parts
[J]. Rare Metal Materials and Engineering, 2006, 35(2): 253-256.


[11]彭雯雯,曾卫东,康超. Deform有限元模拟软件材料数据库的开发与应用
[J]. 材料导报,2011,25(4):131-134.

Peng W W, Zeng W D, Kang C. Development and application of material database for Deform
[J]. Materials Review, 2011, 25(4): 131-134.


[12]李晓光,刘君,李治华. Qform材料数据库的完善与应用
[J]. 钛工业进展,2011,28(2):12-15.

Li X G, Liu J, Li Z H. The improvement and application of material database for Qform
[J]. Titanium Industry Progress, 2011, 28(2): 12-15.


[13]张国新. 基于Deform 石油钻具接头热挤压成形
[J]. 热加工工艺,2012,41(5):78-83.

Zhang G X. Hot extrusion forming of oil drilling tool joint based on Deform
[J]. Hot Working Technology, 2012, 41(5): 78-83.


[14]张义,汪瑾,王鹏,等. 计算机仿真技术在挤压成形工艺上的应用研究
[J]. 机械工程与自动化,2017,(5):123-124.

Zhang Y, Wang J, Wang P, et al. Application of computer simulation technology in extrusion technology
[J]. Mechanical Engineering & Automation, 2017,(5): 123-124.


[15]魏亨,强颖怀,蔡席成,等. 基于DEFORM-3D 的上座圈冷挤压工艺优化
[J].热加工工艺,2017,46(5):146-150.

Wei H, Qiang Y H, Cai X C,et al. Optimization of cold extrusion process of upper ring based on DEFORM-3D
[J]. Hot Working Technology, 2017, 46(5): 146-150.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-62920652 +86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备09032115号-5