网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
精密锻造技术的现状与发展趋势
英文标题:Status and development trend of precision forging technology
作者:赵震 白雪娇 胡成亮 
单位:上海交通大学 
关键词:精锻工艺 锻造模具 复杂件 数值模拟 近净成形 
分类号:TG31
出版年,卷(期):页码:2018,43(7):90-95
摘要:

精密锻造是一种近净成形或净成形技术,来自工业界的现实需求推动了该项技术的发展。针对精锻工艺、锻造模具、复杂件锻造成形以及数值模拟在精锻中的应用分别作了介绍。在工艺方面,出现了具有代表性的温锻-冷锻联合成形、分流锻造成形、流动控制成形、冲锻复合成形与闭塞锻造等新型精锻工艺;在模具结构设计方面,形成了新的方法与理念;在复杂零件的开发方面,围绕具体零件开展的工艺创新与实践依然十分活跃,虽然受到一定的应用限制,但仍具有重要的实际意义;在数值模拟技术应用方面,不断成熟的数值模拟技术使用广泛且逐渐成为必备的研发分析工具。结合以上精锻技术的发展现状,指出了精锻技术在未来的发展趋势。

Precision forging is a kind of near net forming or net forming technology, and the demands from industry push forward the development of the technology. Therefore, the precision forging process, forging die, forging of complex part and the application of numerical simulation in the precision forging were introduced respectivety. For the forging process, some new precision forging processes such as combined warm and cold forging, divided flow forging, flow control forming, forging-stamping compound forming and enclosed die forging were generated, and for the die structure design, some novel methods and ideas were put forward. And then, for the complex part development, the process innovation and practice based on detailed parts were very active, which had important significance although there was some limitation in application. At last, for the numerical simulation technology, the mature numerical simulation technology was widely used and gradually became the necessary analysis tool for research and development. Thus, combining the above status of precision forging technology, the development trend in the future of the precision forging technology was proposed.

基金项目:
作者简介:
赵震(1972-),男,博士,教授,E-mail:zzhao@sjtu.edu.cn
参考文献:

[1]张水忠, 徐新成, 赵中华. 定位偏心轴冷温挤压成形工艺及模具[J]. 锻压技术, 2008, 33(1):81-84.


Zhang S Z, Xu X C, Zhao Z H. Forming process and dies of cold and warm extrusion for location eccentric shaft[J]. Forging & Stamping Technology, 2008, 33(1):81-84.


[2]李倩, 蒋智, 钟志平,. BJ型钟形壳温锻反挤压工艺数值模拟及实验研究[J]. 锻压技术, 2011, 36(2):23-26.


Li Q, Jiang Z, Zhong Z P, et al. Numerical simulation and experiment on warm-cold precision forging process for BJtype outer race[J]. Forging & Stamping Technology, 2011, 36(2):23-26.


[3]张驰, 何巧, 骆静,. 汽车变速器结合齿温锻-冷整形复合精锻工艺及模具研究[J]. 精密成形工程, 2014, 6(1):9-14.


Zhang C, He Q, Luo J, et al. Compound precision forging of warm forging-cold shaping and die for automatic transmission conjunction gear[J]. Journal of Netshape Forming Engineering, 2014, 6(1):9-14.


[4]赵震, 胡成亮, 庄新村,. 温锻-冷锻联合成形两项国家标准研制的必要性及技术概要[J]. 锻压技术, 2012, 37(4):179-181.


Zhao Z, Hu C L, Zhuang X C, et al. Preparation and technical-summaries of two national standards for combined warm-cold forging process[J]. Forging & Stamping Technology, 2012, 37(4):179-181.


[5]Kondo K, Ohga K. Investigation into forming processes of various spur gears[J]. Advanced Technology of Plasticity, 1987, 9(2): 1089-1096.


[6]Ohga K, Kondo K. Precision cold die forging of a ring gear by divided flow method[J]. International Journal of Machine Tools & Manufacture, 1995, 35(8): 1105-1113.


[7]Tuncer C, Dean T A. Die design alternatives for precision forging hollow parts[J]. International Journal of Machine Tools & Manufacture, 1987, 27(1):65-76.


[8]Tuncer C, Dean T A. Precision forging hollow parts in novel dies[J]. Journal of Mechanical Working Technology, 1988, 16 (1): 39-50.


[9]Yang C, Zhao S, Zhang J. Precision forging of spur gear by flow control forming method[J]. Australian Journal of Mechanical Engineering, 2014, 12(1):101-109.


[10]王岗超, 薛克敏, 许锋, . 齿腔分流法冷精锻大模数圆柱直齿轮[J]. 塑性工程学报, 2010, 17(3):18-21.


Wang G C, Xue K M, Xu F, et al. Simulation and experimental study on cold precision forging with flow dividing in dentiform cavity for spur gear of big modulus[J]. Journal of Plasticity Engineering, 2010, 17(3):18-21.


[11]Nakano T. Modern applications of complex forming and multiaction forming in cold forging[J]. Journal of Materials Processing Technology, 1994, 46(1-2): 201-226.


[12]夏巨谌, 胡国安, 王新云,. 轿车安全气囊零件流动控制精密成形技术研究[J]. 锻压技术, 2004, 29(1):1-3.


Xia J C, Hu G A, Wang X Y, et al. Study on flow control precision forming technology of airbag parts in car[J]. Forging & Stamping Technology, 2004, 29(1):1-3.


[13]Wang X Y, Wu Y S, Xia J C, et al. FE simulation and process analysis on forming of aluminum alloy multilayer cylinder parts with flow control forming[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(2):452-456.


[14]邓磊, 王新云, 夏巨谌, . 超硬铝合金机匣体流动控制成形工艺及装备[J]. 锻造与冲压, 2014, (21):


40,42,44.


Deng L, Wang X Y, Xia J C, et al. Flow control forming process and equipment for the casing body of superhard aluminum alloy [J]. Forging & Metalforming, 2014, (21):40,42,44.


[15]李建平, 车路长. 冲压冷锻成形工艺的模具设计及坯料计算方法研究[J]. 锻压技术, 2007, 32(4):52-56.


Li J P, Che L C. Study on the die design of flow control forming of sheet metal and calculating method of billets[J]. Forging & Stamping Technology, 2007, 32(4):52-56.


[16]李湖峰, 卢险峰. 薄板件台阶孔冲压冷锻组合工艺的数值模拟[J]. 机械工程学报, 2008, 44(10):266-271.


Li H F, Lu X F. Numerical simulation of flow control forming process for stepped hole of thin sheet metal[J]. Chinese Journal of Mechanical Engineering, 2008, 44(10):266-271.


[17]Jin J, Wang X, Deng L, et al. A single-step hot stamping-forging process for aluminum alloy shell parts with nonuniform thickness[J]. Journal of Materials Processing Technology, 2016, 228: 170-178.


[18]王以华, 吕景林, 姜剑敏,. 锻模设计技术及实例[M]. 北京:机械工业出版社, 2009.


Wang Y H, Lyu J L, Jiang J M, et al. Forging Die Design Technology and Examples[M]. Beijing: China Machine Press, 2009.


[19]潘秀秀, 杨屹, 杨刚,. 工作夹片的锻造工艺数值模拟分析[J]. 锻压技术, 2015, 40(3):11-15.


Pan X X, Yang Y, Yang G, et al. Numerical simulation and analysis of forging process for the work clamping piece[J]. Forging & Stamping Technology, 2015, 40(3):11-15.


[20]Song J H, Im Y T. Process design for closed-die forging of bevel gear by finite element analyses[J]. Journal of Materials Processing Technology, 2007, 192(5):1-7.


[21]张强, 褚作明, 陈东, . 5Cr4W5Mo2V热作模具钢的等温淬火工艺和韧性[J]. 材料热处理学报, 2014, 35(10):94-97.


Zhang Q, Chu Z M, Chen D, et al. Austempering process and toughness of 5Cr4W5Mo2V hot-working die steel[J]. Transactions of Materials & Heat Treatment, 2014, 35(10):94-97.


[22]Kwan C T, Wang C C. An optimal pre-stress die design of cold backward extrusion by RSM method[J]. Structural Longevity, 2011, 5(1): 25-32.


[23]胡成亮, 刘全坤, 赵震, . 考虑弹性变形行为的齿形凹模修正方法[J]. 上海交通大学学报, 2009, 43(1):52-55.


Hu C L, Liu Q K, Zhao Z, et al. Modification method of gear-shaped die considering elastic deformation behavior[J]. Journal of Shanghai Jiaotong University, 2009, 43(1):52-55.


[24]Hu C L, Zhao Z, Zhi Y S, et al. Thermoelastic deformation of three-layer combined die with non-uniform temperature distribution[J]. Journal of Thermal Stresses, 2014, 37(10):1230-1243.


[25]Hu C, Yang F, Zhao Z, et al. Thermoelastic deformation of three-layer combined die under steady-state temperature field[J]. Journal of Thermal Stresses, 2016, 39(1):103-119.


[26]Groenbaek J, Birker T. Innovations in cold forging die design[J]. Journal of Materials Processing Technology, 2000, 98(2):155-161.


[27]何旺枝, 罗善明, 王建,. 弧齿锥齿轮温锻成形工艺参数分析[J]. 机械传动, 2010, 34(6):82-85.


He W Z, Luo S M, Wang J, et al. Analysis on the warm forging process parameter of spiral bevel gear[J]. Journal of Mechanical Transmission, 2010, 34(6):82-85.


[28]李元洪, 刘百宣, 刘华,. 42CrMo转向器齿轮冷锻及热处理工艺的试验研究[J]. 热加工工艺, 2010, 39(1):92-93.


Li Y H, Liu B X, Liu H, et al. Study on cold forging and heat treatment of 42CrMo steering gear[J]. Hot Working Technology, 2010, 39(1):92-93.


[29]Wang B, Li Z, Zheng M, et al. Modelling and experimental research in hot precision forging of shaft gear[A]. Proceedings of the 4th International Conference on New Forming Technology[C]. Glasgow, Scotland, UK, 2015.


[30]Hu C L, Wang L, Zhao Z, et al. Study on precision forging process of spur gear in parking brake[A]. International Conference on Advanced Technology of Design and Manufacture, IEEE[C]. Beijing, 2012.


[31]郜建新, 赵培峰, 宋克兴,. 316L不锈钢套筒热挤压工艺研究[J]. 热加工工艺, 2012, 41(1):95-97.


Gao J X, Zhao P F, Song K X, et al. Study on hot extrusion technology for 316L stainless steel sleeve[J]. Hot Working Technology, 2012, 41(1):95-97.


[32]Wang S C, Zhang X H, Hu X L, et al. Study on the hot extrusion forming process of the cylindrical shell of automobile hydraulic shock absorber[A]. International Conference on Advanced Material and Energy Sustainability[C]. Wuhan, 2016.


[33]曹治国. 钎套温挤压模具设计与研究[J]. 热加工工艺, 2012, 41(7):188-190.


Cao Z G. Design and research of warm extrusion mold for brazing sets[J]. Hot Working Technology, 2012, 41(7):188-190.


[34]Yoon J, Lee S I. Warm forging of magnesium AZ80 alloy for the control arm in an automobile[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2015, 229(13):1732-1738.


[35]Behrens B A, Suchmann P, Schott A. Warm forging: New forming sequence for the manufacturing of long flat pieces[J]. Production Engineering, 2008, 2(3): 261-268.


[36]Behrens B A, Nickel R, Müller S. Flashless precision forging of a two-cylinder-crankshaft[J]. Production Engineering, 2009, 3(4-5): 381-389.


[37]吴彦骏, 赵震, 梁艳迁, . 基于近似替代模型的多工位高速锻造预锻模具优化[J]. 塑性工程学报, 2009,16(4):79-84.


Wu Y J, Zhao Z, Liang Y Q, et al. Optimization of preform of high-speed multi-stage forging based on surrogate model methodology[J]. Journal of Plasticity Engineering, 2009, 16(4):79-84.


[38]Kroi T, Engel U, Merklein M. Comprehensive approach for process modeling and optimization in cold forging considering interactions between process, tool and press[J]. Journal of Materials Processing Technology, 2013, 213(7): 1118-1127.


[39]占亮, 李霞, 孙礼宾,. 基于正交试验的曲轴热锻工艺参数优化[J]. 锻压技术, 2014, 39(7):10-13.


Zhan L, Li X, Sun L B, et al. Design optimization of process parameters of crankshaft die forging based on orthogonal experiment[J]. Forging & Stamping Technology, 2014, 39(7):10-13.


[40]熊贵芳, 林启权, 王志刚. 冷挤压组合凹模失效分析及挤压过程数值模拟[J]. 热加工工艺, 2009, 38(9):69-73.


Xiong G F, Lin Q Q, Wang Z G. Failure analysis of cold extrusion combination concave die and numerical simulation of extrusion process[J]. Hot Working Technology, 2009, 38(9):69-73.


[41]Gronostajski Z, Kaszuba M, Polak S, et al. The failure mechanisms of hot forging dies[J]. Materials Science & Engineering A, 2016, 657:147-160.


[42]汪学阳, 王华君, 王华昌, . 基于FEM的热锻模磨损分析与寿命预测[J]. 润滑与密封, 2008, 33(5):54-58.


Wang X Y, Wang H J, Wang H C, et al. Prediction of hot forging die service life based on finite element method[J]. Lubrication Engineering, 2008, 33(5):54-58.


[43]Behrens B A. Finite element analysis of die wear in hot forging processes[J]. CIRP Annals-Manufacturing Technology, 2008, 57(1):305-308.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9