网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车纵梁液压成形模拟研究
英文标题:Simulation study on hydroforming for longitudinal beam of car
作者:吴量 罗建斌 李健 苏海迪 朱书建 常雪 
单位:(广西科技大学 广西车辆零部件与整车技术重点实验室 广西 柳州 545006) 
关键词:液压成形 汽车纵梁 液压加载路径 摩擦系数 最大减薄率 
分类号:TG394
出版年,卷(期):页码:2018,43(5):0-0
摘要:

 为探究汽车纵梁液压成形规律,并为其工程化应用提供必要的指导,对方形管进行脉动液压成形实验及数值模拟,并通过实验验证模拟的正确性。首先明确纵梁液压成形工序及主要参数,然后对其成形全过程进行仿真研究,最后基于此分析了液压加载路径、成形模具与管坯接触面间摩擦系数对纵梁液压成形壁厚分布及成形件最大减薄率的影响规律。结果表明:在常规加载中,前期增压至成形压力值一半左右,并进行一段时间的保压,后期升压至成形压力,其加载路径下的成形构件最大减薄率最小,壁厚分布整体最均匀;在此加载路径基础上,采用脉动加载可进一步提高其成形质量;同时,摩擦系数越小,成形最大减薄率越小,整体壁厚值越接近初始管坯值且分布越均匀。

 In order to study the hydroforming regulation of longitudinal beam of car and provide the necessary guidance for its engineering application, the experiment and numerical simulation of the pulsating hydroforming rectangular tube were carried out,and the correctness of simulation was verified by experiment. Then, the hydroforming process and main parameters of the longitudinal beam were confirmed, and the whole process of forming was simulated. Based on the above facts, the influences of hydraulic loading path and friction coefficient  of contact surface between die and tube on the wall thickness distribution and the maximum thinning rate of the longitudinal beam in hydroforming were analyzed. The results show that in conventional loading the pressure is increased to approximately half of the forming pressure in the early stage, maintained for a period of time, and then increased to the forming pressure in the later period. In this loading path,the maximum thinning rate is the smallest, and the wall thickness distribution is the most uniform. Based on the above loading path, the pulsating hydroforming loading path can further improve the quality of longitudinal beam. At the same time,the smaller the friction coefficient is,the smaller the maximum thinning rate of forming is,the closer the wall thickness to that of initial tube is,and the more uniform the wall thickness distribution is.

基金项目:
广西自然科学基金资助项目(2016GXNSFAA380211);柳州市科学研究与技术开发计划课题(2016C050203);广西科技大学研究生教育创新计划项目(GKYC201702)
作者简介:
作者简介:吴量(1993-),男,硕士研究生 Email:wulianghold@163.com 通讯作者:李健(1980-),男,博士,教授 Email: lijian0772@126.com
参考文献:

[1]韩聪,苑世剑. 汽车轻量化结构件内高压成形技术与装备最新进展
[J]. 汽车工艺师,2017,15(4):24-26.

Han C,Yuan S J. The latest development of hydroforming technology and equipment in the light weight structure of automobile
[J]. Modern Components,2017,15(4):24-26.


[2]韩聪,贺久强,苑世剑. 780 MPa超高强钢扭力梁内高压成形研究
[J]. 精密成形工程,2016,8(5):53-59.

Han C,He J Q,Yuan S J. Hydroforming of an automotive torsion beam with 780 MPa advanced high strength steel
[J]. Journal of Netshape Forming Engineering,2016,8(5):53-59.


[3]Huang T L,Song X W,Liu X Y. The multiobjective robust optimization of the loading path in the Tshape tube hydroforming based on dual response surface model
[J]. The International Journal of Advanced Manufacturing Technology,2016,82(9-12):1595-1605.


[4]朱明清,吉卫喜,张旭,等. 钛T型管液压成形的工艺参数研究
[J]. 锻压技术,2015,40(1):56-60.

Zhu M Q,Ji W X,Zhang X,et al. Research on technological parameters of hydroforming for titanium Tshaped tube
[J]. Forging & Stamping Technology,2015,40(1):56-60.


[5]阴雪莲,逯若东. 管状扭力梁液压成形有限元仿真分析及实验
[J]. 锻压技术,2017,42(9):82-86.

Yin X L,Luo R D. Finite element simulation and experiment on hydroforming tubular twist beam
[J]. Forging & Stamping Technology,2017,42(9):82-86.


[6]任建军,马亚业,郭群,等. 汽车前指梁多工步成形模拟及实验研究
[J]. 塑性工程学报,2016,23(6):30-36.

Ren J J,Ma Y Y,Guo Q,et al. Numerical simulation and experiment of automobile chassis vertical beam
[J]. Journal of Plasticity Engineering,2016,23(6):30-36.


[7]张柯. 某轿车后悬架摆臂内高压成形仿真研究
[D]. 秦皇岛:燕山大学,2014.

Zhang K. Research on Hydroforming Simulation of the Car′s Real Suspension Sway Arm
[D]. Qinhuangdao:Yanshan University,2014.


[8]彭华勇. 汽车发动机托架的管材液压形成机制研究
[J]. 机床与液压,2017,45(14):70-73.

Peng H Y. Pipe hydraulic formed mechanism of car engine bracket
[J]. Machine Tool & hydraulics,2017,45(14):70-73. 


[9]何玉林,吴春蕾,杨连发. 管材脉动液压成形时接触压强与液体压强关系的研究
[J]. 锻压技术,2015,40(10):29-33. 

He Y L,Wu C L,Yang L F. Research on the relationship of contact pressure and hydraulic pressure in the tube pulsating hydroforming
[J]. Forging & Stamping Technology,2015,40(10):29-33. 


[10]Yang L F,Wu C L,He Y L. Dynamic frictional characteristics for the pulsating hydroforming of tubes
[J]. The International Journal of Advanced Manufacturing Technology,2016,86(1):1-11.


[11]Xu Y,Zhang S H,Cheng M,et al. Application of pulsating hydroforming in manufacture of engine cradle of austenitic stainless steel
[J]. Procedia Engineering,2014,81:2205-2210.


[12]贾宇坤,罗建斌,李健,等. 轿车加强梁内高压成形规律的仿真研究
[J]. 锻压技术, 2017, 42(2): 83-88.

Jia Y K,Luo J B,Li J,et al. Simulation study on the hydroforming regulation of reinforcing beam of car
[J]. Forging & Stamping Technology,2017,42(2):83-88.


[13]GB/T 13401—2017,钢制对焊管件技术规范
[S]. 

GB/T 13401—2017,Technical specification for welded tube of steel
[S]. 


[14]GB/T 4437.1—2000,铝及铝合金热挤压管第1部分:无缝圆管
[S]. 

GB/T 4437.1—2000,Hotextruded tube of aluminum and aluminum alloy-Part 1: Seamless tube
[S]. 


[15]Yang L F,Chen F J. Investigation on the formability of a tube in pulsating hydroforming
[J]. Materials Science Forum,2009,628-629:617-622.


[16]王碧. 某车架纵梁内高压成形工艺数值仿真分析研究
[D]. 长春:吉林大学,2015.

Wang B. Numerical Simulation Studies on Tube Hydroforming for a Frame Side Rail
[D]. Changchun:Jilin University,2015.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9