网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同工艺参数对某薄板多筋类零件成形的影响及优化
英文标题:Influence and optimization of different process parameters on forming of a thin-plate and multi-ribbed part
作者:董蓓蓓 李国俊 张治民 车鑫 
单位:中北大学 
关键词:铝合金 薄板多筋类零件 等温挤压 成形载荷 正交试验 有限元模拟 
分类号:TG386
出版年,卷(期):页码:2018,43(4):42-46
摘要:

对某薄板多筋类零件的成形工艺参数进行研究,借助有限元模拟软件对其成形过程进行模拟。基于正交试验方法,并利用数据分析软件,对挤压温度、挤压速度和摩擦系数这3个工艺参数进行优化,从而确定最佳的成形方案为挤压温度480 ℃、挤压速度1 mm·s-1、摩擦系数0.1的等温挤压,零件的最小成形载荷为6.49 MN。此外,为验证正交试验数据的正确性,在仿真及正交优化的基础上,在3000 t压机上进行了挤压试验,得出零件的成形性能与有限元模拟结果一致。研究结果表明,基于正交试验法对大型薄板多筋类零件的挤压成形工艺参数优化是可行的,能够缩短生产周期、提高材料利用率。

The forming process parameters of a thin-plate and multi-ribbed part were studied, and the forming process was simulated by finite element simulation software. Based on the orthogonal test method and data analysis software, the extrusion temperature, extrusion speed and friction coefficient were optimized, and the optimum isothermal extrusion forming scheme was determined with the extrusion temperature of 480 ℃, the extrusion speed of 1 mm·s-1 and the friction coefficient of 0.1, and the smallest forming load was 6.49 MN. In addition, in order to verify the reasonability of orthogonal test data, based on the simulation and orthogonal optimization, the actual extrusion test was conducted by the 3000 t press, and the forming performance of part was consistent with the finite element simulation results. The results show that it is feasible to optimize the extrusion process parameters of large thin-plate and multi-ribbed part through the orthogonal test method, which can shorten the production period and improve the material utilization.

基金项目:
山西省自然科学基金资助项目(2013011022-5)
作者简介:
董蓓蓓(1993-),女,硕士研究生;E-mail:dongbb1111@163.com;通讯作者:张治民(1956-),男,博士,教授,博士生导师;E-mail:zbzhangzhimin@126.com
参考文献:

[1]梁柱, 李国俊, 张治民,. 5A06铝合金带筋薄板件挤压缺陷的模拟分析及优化[J]. 锻压技术, 2016,41(2):51-57.


Liang Z, Li G J, Zhang Z M, et al. Simulation analysis and optimization of extrusion defects for aluminum alloy 5A06 sheet with rib [J]. Forging & Stamping Technology, 2016, 41 (2): 51-57.


[2]吴耀金, 张治民. 铝合金LF6变形工艺与微观组织关系的研究[J]. 热加工工艺, 2006, 35(8):25-27.


Wu Y J, Zhang Z M. Research on relationship of deformation process and microstructure of aluminum alloy LF6 [J]. Hot Working Technology, 2006, 35(8): 25-27.


[3]柏立敬,冯再新,张治民. 5A06铝合金变形工艺参数与显微组织关系实验研究 [J]. 有色金属加工,2007,366):14-16,25.


Bai L J, Feng Z X, Zhang Z M. Experimental research on relationship between deformation factors and microstructures of 5A06 aluminum alloy [J]. Nonferrous Metals Processing, 2007, 36 (6):14-16,25.


[4]刘龙飞, 胡少华,卢立伟.切削速度对AZ31镁合金高速切削切屑形成的影响[J]. 稀有金属,201640 (7): 654-659.


Liu L F, Hu S H, Lu L W. Effect of cutting velocity on sawtooth chip of AZ31 magnesium alloy under high-speed cutting [J]. Chinese Journal of Rare Metals, 2016,40 (7): 654-659.


[5]宋超, 李国俊,张治民,等.某复杂盒体零件成形工艺[J]. 锻压技术,2016, 4111):15-20.


Song C, Li G J, Zhang Z M, et al. Forming technology of a complex box-shaped part [J]. Forging & Stamping Technology, 2016, 4111: 15-20.


[6]任大为. 稀土镁合金变壁厚叶片成形工艺研究[D]. 太原:中北大学, 2014.


Ren D W. The Molding Technology Study of Rare Earth Magnesium Alloy of Variable Wall Thickness Blade[D]. Taiyuan: North University of China, 2014.


[7]贾俐俐.挤压工艺及模具[M].北京:机械工业出版社,2004.


Jia L L. Extrusion Technology and Die [M]. Beijing: China Machine Press, 2004.


[8]王明哲,王麟平,张宝红,等.铝合金锥壳体成形工艺分析[J]. 热加工工艺,2013, 42 (5)24-26.


Wang M Z, Wang L P, Zhang B H, et al. Analysis on forming process of aluminum alloy conical shell [J]. Hot Working Technology, 2013, 42 (5):24-26.


[9]Yang Q S, Jiang B, Xiang Q, et al. Microstructure evolution and corrosion performance of AZ31 magnesium alloy sheets [J]. Rare Metal Materials and Engineering, 2016, 45 (7): 1674-1677.


[10]董丽,邢同超,周淑芳,等. 基于正交试验的汽车引擎外板成形工艺参数优化[J]. 锻压技术,2016, 4111):62-64.


Dong L, Xing T C, Zhou S F, et al. Optimization of forming process parameters for automobile engine cover based on orthogonal experiment[J]. Forging & Stamping Technology 2016, 4111: 62-64.


[11]李大乔. 7075铝合金瞄准镜座热塑性成形数值模拟及成形工艺研究[D]. 南京:南京理工大学, 2014.


Li D Q. Numerical Simulation and the Forming Process Research for Thermoplastic Deformation of 7075 Aluminum Alloy Sight [D]. NanjingNanjing University of Science & Technology, 2014.


[12]刘瑞江,张业旺,闻崇炜,. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9): 52-55.


Liu R J, Zhang Y W, Wen C W, et al. Study on the design and analysis methods of orthogonal experimental [J]. Experimental Technology and Management, 2010, 27(9): 52-55.


[13]何秋月. SPSSL9(34)正交试验数据处理中的应用[J]. 中国中医药现代远程教育, 2005, 18(12):27-29.


He Q Y. Application of SPSS on data processing in L9(34) orthogonal test [J]. Chinese Medicine Modern Distance Education of China, 2005, 18(12): 27-29.


[14]Xu J, Yang H, Li H, et al. Significance-based optimization of processing parameters for thin-walled aluminum alloy tube NC bending with small bending radius [J]. Transaction of Nonferrous Metals Society of China, 2012, 22 (1): 147-156.


[15]Li C, Yang H, Zhan M, et al. Effects of process parameters on numerical control bending process for large diameter thin-walled aluminum alloy tubes [J]. Transaction of Nonferrous Metals Society of China, 2009, 19 (3): 668-673.


[16]Zhang C S, Zhao G Q, Chen H, et al. Numerical simulation and metal flow analysis of hot extrusion process for a complex hollow aluminum profile [J]. International Journal of Advantaged Manufacturing Technology, 2012, 60 (1): 101-110.


[17]Yang D Y, Park K, Kang Y S. Integrated finite element simulation for the hot extrusion of complicated Al alloy profiles [J]. Journal of Material Process Technology, 2011, 111 (1-3): 25-30.


[18]李峰,林俊峰,初冠南,等.铝合金锻件成形工艺及三维有限元分析[J]. 中国有色金属学报,2009, 19 (7): 1197-1202.


Li F, Lin J F, Chu G N, et al. 3D finite element analysis and forging process of aluminum alloy forging parts [J]. The Chinese Journal of Nonferrous Metals, 2009, 19 (7): 1197-1202.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9