网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
椭球曲面薄壁构件蠕变时效成形仿真与试验
英文标题:Simulation and experiment on creep aging for thin wall component with ellipsoid surface
作者:杨占 湛利华 王萌 常志龙 马云龙 万李 
单位:中南大学 北京宇航系统工程研究所 首都航天机械有限公司 
关键词:椭球曲面薄壁构件 2219铝合金 蠕变时效成形 有限元仿真 成形性能 
分类号:TG146.21
出版年,卷(期):页码:2018,43(2):0-0
摘要:

 基于2219铝合金宏微观统一蠕变时效本构模型,应用大型商业有限元分析软件MSC.MARC对其进行二次开发,实现以运载火箭燃料贮箱瓜瓣为代表的椭球曲面薄壁构件的蠕变时效成形过程模拟仿真,分析了仿真过程中构件内部应力、应变、屈服强度分布以及变化规律,并开展了贮箱瓜瓣的蠕变时效成形试验。对比仿真与试验结果可知,构件各位置仿真与试验成形偏差在1.95 mm以内,构件力学性能最优位置位于底边中点区域,典型位置处屈服强度分布规律与仿真结果一致,其测试值与仿真值偏差在6.62%以内,构件各个位置沿轧制不同角度的屈服强度值呈现出0°<45°<90°的趋势。仿真模拟与试验结果存在较好的一致性,验证了蠕变时效本构模型和有限元仿真模型的正确性。

 Based on the macro-microscopic unified creep aging constitutive model of aluminum alloy 2219, the secondary development was conducted by the large-scale commercial finite element analysis software MSC.MARC, and the creep aging process of thin wall component with ellipsoid surface for carrier rocket fuel tank melon flap was simulated. Then, the distribution and variation law of stress, strain, yield strength of components were analyzed during the simulation process,and the creep aging tests of tank melop flap were carried out. The comparison between simulation results and test results shows that the deviation of each position for components is within 1.95 mm, and the optimal position of mechanical properties is in the midpoint of bottom edge. Furthermore, the distribution of tested yield strength at the typical position is consistent with the simulation results with a deviation of 6.62%, and the yield strength values at different rolling angles of each component exhibit a tendency of 0°<45°<90°. Thus, the simulation results are in good agreement with the test results, and the correctness of creep aging constitutive model and finite element simulation model are verified.

基金项目:
国防科工局预研项目(JCKY2014203A001);国家重点基础研究发展计划(2014CB046602)
作者简介:
作者简介:杨占(1991-),男,硕士研究生 E-mail:734726461@qq.com 通信作者:湛利华(1976-),女,博士,教授 E-mail:yjs-east@csu.edu.cn
参考文献:

 
[1]《航空制造工程手册》总编委会. 航空制造工程手册:飞机钣金工艺
[M]. 北京:航空工业出版社, 1992.


 

Editorial Board of Aeronautical Manufacturing Engineering Manual. Aeronautical Manufacturing Engineering Manual: Aircraft Sheet Metal Technology
[M]. Beijing:Aviation Industry Press, 1992.

 


[2]Phil G. Monolithic structures
[J]. SAMPE Journal, 1999, 35(3): 66-69.

 


[3]张姣. 2219铝合金电脉冲辅助蠕变/应力松弛时效行为及建模研究
[D]. 长沙:中南大学, 2015.

 

Zhang J. 2219 Aluminum Alloy Electric Pulse Auxiliary Creep / Stress Relaxation Aging Behavior and Modeling
[D]. Changsha:Central South University, 2015.

 


[4]李宝蓉, 张丽娜. H-2B运载火箭贮箱制造技术与应用
[J]. 航天制造技术, 2008, (5):35-37.

 

Li B R, Zhang L N. H-2B carrier rocket manufacturing technology and application
[J]. Aerospace Manufacturing Technology, 2008, (5): 35-37.

 


[5]Holman M C. Autoclave age forming large aluminum aircraft panels
[J]. Journal of Mechanical Working Technology, 1989, 20: 477-488.

 


[6]Munroe J, Wilkins K, Gruber M. Integral airframe structures (IAS)-validated feasibility study of integrally stiffened metallic fuselage panels for reducing manufacturing costs
[R]. NASA/CR-2000-209337, 2000.

 

 


[7]Wang T, Platts M J, Wu J. The optimisation of shot peen forming processes
[J]. Journal of Materials Processing Technology, 2008, 206(1): 78-82.

 


[8]肖寒, 刘劲松, 程明, 等. 铝合金整体壁板橡胶填料辅助滚弯成形试验研究
[J]. 轻合金加工技术, 2009,(6): 52-55.

 

Xiao H, Liu J S, Cheng M, et al. Research on formability of rubber filling roll bending process of integral panel skins
[J]. Light Alloy Fabrication Technology, 2009, (6): 52-55.

 


[9]韩志仁, 祁桂根, 张凌云. 飞机大型蒙皮制造技术现状分析
[J]. 沈阳航空工业学院学报, 2008, 25(3): 1-5.

 

Han Z R, Qi G G, Zhang L Y.Analysis of the present situation of large-scale skin manufacturing technology for aircraft
[J]. Journal of Shenyang Institute of Aeronautical Engineering,2008, 25(3): 1-5.

 


[10]郭廷玮, 李安定, 徐介平. 金属材料的高温强度理论:设计
[M]. 北京:科学出版社, 1983.

 

Guo T W, Li A D, Xu J P. Metallic Materials of High Temperature Strength Theory and Design
[M]. Beijing:Science Press, 1983.

 


[11]Ho K C, Lin J, Dean T A. Modelling of springback in creep forming thick aluminum sheets
[J]. International Journal of Plasticity, 2004, 20(4):733-751.

 


[12]黄霖, 万敏. 铝合金厚板时效成形回弹补偿算法
[J]. 航空学报, 2008, 29(5):1406-1410.

 

Huang L,Wan M.Compensation algorithm for springback in age forming for aluminum alloy thick plate
[J]. Acta Aeronautica Et Astronautica Sinica, 2008, 29(5):1406-1410.

 


[13]黄霖, 万敏, 吴向东,等. 整体壁板时效成形的回弹预测及模面补偿技术
[J]. 航空学报, 2009, 30(8):1531-1536.

 

Huang L, Wan M, Wu X D,et al. Prediction of springback and tool surface modification technology for age forming of integral panel
[J]. Acta Aeronautica Et Astronautica Sinica, 2009, 30(8):1531-1536.

 


[14]甘忠, 张磊, 许旭东,等. 整体壁板时效成形模具回弹补偿的工艺研究
[J]. 塑性工程学报, 2010, 17(5):15-18.

 

Gan Z, Zhang L, Xu X D, et al. Research on springback compensation of mold surface for age forming of integral panel
[J]. Journal of Plasticity Engineering, 2010, 17(5):15-18.

 


[15]许晓龙. 蠕变时效统一本构建模与成形模面回弹补偿
[D]. 长沙:中南大学, 2014.

 

Xu X L. Unified Constitutive Modelling on Creep Aging and Springback Modification of Forming Tool Surface
[D]. Changsha:Central South University, 2014

 


[16]Kowalewski Z L, Hayhurst D R, Dyson B F. Mechanisms-based creep constitutive equation for an aluminium alloy
[J]. The Journal of Strain Analysis for Engineering Design, 1994 ,29(4): 309-316.

 


[17]王萌, 湛利华, 李文科,等. 2219铝合金蠕变时效研究及宏微观本构建模
[J]. 热加工工艺, 2017,46(6):221-225.

 

Wang M, Zhan L H, Li W K,et al. Study on aging creep and macro-micro constitutive modeling for 2219 Al alloy
[J].Hot Working Technology, 2017,46(6):221-225.

 


[18]GB/T 228—2002,金属材料室温拉伸试验方法
[S]. 

 

GB/T 228—2002,Metallic materials—Tensile testing at ambient temperature
[S].

 


[19]湛利华, 张姣, 贾树峰. 2219铝合金应力时效强度演变规律及其强化模型
[J]. 中南大学学报:自然科学版, 2016, 47(7):2235-2241.

 

Zhan L H, Zhang J, Jia S F.Strength evolution rule and its model for stress aging of 2219 aluminum alloy
[J]. Journal of Central South University:Science and Technology, 2016, 47(7):2235-2241.

 


[20]Jata K V, Hopkins A K, Rioja R J. The anisotropy and texture of Al-Li alloys
[J]. Materials Science Forum, 1996, 217-222: 647-652.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9