网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
复杂断面空心型材的双级分流模挤压过程模拟分析
英文标题:Simulation analysis on two-stage porthole dies extrusion for complicated hollow section profile
作者:徐宁  黄东男 李有来 薛江平 玄东坡 
单位:内蒙古工业大学 
关键词:复杂断面空心型材 挤压 双级分流模 常规分流模 金属流动行为 
分类号:TG379
出版年,卷(期):页码:2016,41(12):62-66
摘要:

 对于非对称断面、大壁厚且空心的复杂断面空心铝型材,采用常规分流模挤压时很难平衡金属流速,型材挤出后经常产生弯曲或扭拧现象。为此,提出了在常规分流模前增加一级分流模,使传统的分流-焊合-成形的3个阶段变为预分流-分流-焊合-成形的4个阶段,进而达到平衡金属流速目的。研究结果表明:双级分流模比常规分流模挤压时金属流动均匀性得到了改善;各孔金属流速平均值为6.41 mm·s-1,方差为0.2511且降低了65%;挤压温度场分布均匀,温差在7~12 ℃之间范围内,抵消了温差不均匀的影响;焊合室内静水压力平均值约为290 MPa,模芯周围静水压力分布均匀,模芯不易发生移动。

 For aluminum profile with non-symmetrical section, large wall thickness and complex hollow section, it is difficult to balance the metal flow during the conventional porthole die extrusion process, and bending and twisting may occur in the extruded profile. Therefore, adding the pre-dividing porthole die before the conventional porthole dies was put forward, and the traditional three stage of dividing-welding-forming was changed into four stage of pre-dividing, dividing, welding and forming so as to balance metal flow velocity. The results show that the metal flow uniformity is improved by the double stage porthole die compared with the conventional porthole die extrusion, and the mean velocity of metal flow in each hole is 6.41 mm·s-1 and the variance is 0.2511, which is decreased by 65%. Meanwhile, the extrusion temperature field distribution is uniform, the temperature difference is between 7-12 ℃,which can offset the effect of temperature difference. Furthermore, the average value of hydrostatic pressure in welding chamber is about 290 MPa, and the distribution of the hydrostatic pressure around the mandrel is uniform and difficult to move.

基金项目:
基金项目:国家自然科学基金资助项目(51364027);内蒙古自然科学基金项目资助项目(2013MS0708);内蒙古工业大学中青年学术骨干项目(10381007)
作者简介:
作者简介:徐宁(1992-),男,硕士研究生 E-mail:xuning_0620@163.com 通讯作者:黄东男(1979-),男,博士,教授 E-mail:dongnan_2000@163.com
参考文献:

 
[1]谢建新, 刘静安. 金属挤压理论与技术:第2版
[M]. 北京: 冶金工业出版社, 2012.


 

Xie J X, Liu J A. Theory and Technology of Metals Extrusion
[M]. Second Edition. Beijing: Metallurgical Industry Press, 2012. 

 


[2]谢建新. 金属挤压技术的发展现状与趋势
[J]. 中国材料进展, 2013, 32(5): 254-263.

 

Xie J X. Current situation and development trends of metals extrusion technology
[J]. Materials China, 2013, 32(5): 254-263.

 


[3]He Z, Wang H N, Wang M J, et al. Simulation of extrusion process of complicated aluminum profile and die trial
[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 1732-1737.

 


[4]孙德河,王丽薇,解文科.AZ31B镁合金薄板挤压成形模拟分析
[J]. 锻压技术,2016,41(1):61-65.

 

Sun D H,Wang L W,Xie W K. Simulation analysis on thin sheet of magnesium alloy AZ31B in the extrusion process
[J]. Forging & Stamping Technology,2016,41(1):61-65.

 


[5]黄东男, 孙玉国, 马玉,等. 断面分流比对双孔分流模挤压方管焊合过程及焊合质量的影响
[J]. 锻压技术, 2014, 39(11): 112-116.

 

Huang D N, Sun Y G, Ma Y, et al. Influence of area ratio of potholes on welding process and quality during the extrusion of square tube by a porthole die
[J]. Forging & Stamping Technology, 2014, 39(11): 112-116.

 


[6]Zhang C S, Zhao G Q, Chen Z R, er al. Effect of extrusion stem speed on extrusion process for a hollow aluminum profile
[J]. Materials Science and Engineering B, 2012,177: 1691-1697.

 


[7]Hsu Q C, Chen Y L, Lee T H. Non-symmetric hollow extrusion of high strength 7075 aluminum alloy
[J]. Procedia Engineering, 2014, 81: 622-627.

 


[8]张志豪, 谢建新. 挤压模具数字化设计与数字化制造
[J]. 中国材料进展, 2013, 32(5) :293-299.

 

Zhang Z H,Xie J X. Digital design and manufacture of extrusion die
[J]. Materials China,2013, 32 (5): 293-299.

 


[9]杨志高, 徐永礼, 庞祖高,等. 基于 Deform-3D 方管铝合金型材等温挤压的变速挤压数值模拟
[J]. 锻压技术, 2015, 40(4): 152-157.

 

Yang Z G, Xu Y L, Pang Z G,et al. Numerical simulation of variable speed extrusion for isothermal extrusion process of aluminum alloy square tube based on Deform-3D
[J]. Forging & Stamping Technology, 2015, 40(4): 152-157.

 


[10]赵恒良,钟志平,翟月雯,等.基于AFDEX的45° 斜三通挤压成形工艺数值模拟及试验研究
[J]. 锻压技术,2016,41(4):60-63.

 

Zhao H L,Zhong Z P,Zhai Y W,et al. Numerical simulation and experimental study on extrusion forming process of 45° lateral tee based on AFDEX
[J]. Forging & Stamping Technology,2016,41(4):60-63.

 


[11]徐磊, 赵国群, 张存生,等. 多腔壁板铝型材挤压过程数值模拟及模具优化
[J]. 机械工程学报, 2011, 47(22) :61-68.

 

Xu L, Zhao G Q, Zhang C S,et al. Numerical simulation of extrusion process and die optimization for aluminum multi-cavity profile
[J]. Journal of Mechanical Engineering, 2011, 47(22):61-68.

 


[12]He Y F, Xie S S, Cheng L,et al. FEM simulation of aluminum extrusion process in porthole die with pockets
[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: 1067-1071.

 


[13]He Z, Wang H N, Wang M J,et al. Simulation of extrusion process of complicated aluminium profile and die trial
[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 1732-1737.

 


[14]唐鼎, 邹天下, 李大永, 等. 亚毫米孔径微通道铝合金管挤压成形的数值模拟
[J]. 塑性工程学报, 2011,18(3) :25-29.

 

Tang D,Zou T X,Li D Y,et al. Numerical simulation study up-on extrusion forming of microchannel tube
[J. Journal of Plasticity Engineering,2011,18 (3): 25-29.

 


[15]李利, 侯文荣, 张志豪, 等. 断面复杂程度对铝合金挤压实心型材出模孔温度的影响
[J]. 塑性工程学报, 2015, 22(2): 13-17.

 

Li L, Hou W R, Zhang Z H, et al. Effect of cross-section complexity on the extrusion exit temperature of aluminum solid profile
[J]. Journal of Plasticity Engineering,2015,22 (2): 13-17.

 


[16]Fang G, Zhou J, Duszczyk J. Extrusion of 7075 aluminium alloy through double-pocket dies to manufacture a complex profile
[J]. Journal of Materials Processing Technology, 2009, 209 : 3050-3059.

 


[17]黄东男, 于洋, 宁宇, 等. 分流模挤压非对称断面铝型材有限元数值模拟分析
[J]. 材料工程, 2013, (3): 32-37.

 

Huang D N, Yu Y, Ning Y, et al. FEM simulation of an Al-alloy profile with non-symmetrical cross section during porthole extur-sion
[J]. Journal of Materials Engineering,2013, (3): 32-37.

 


[18]黄东男, 于洋, 宁宇, 等. 复杂断面空心铝型材分流模挤压焊合过程金属流变行为分析
[J]. 材料工程, 2014, (9): 68-75.

 

Huang D N, Yu Y, Ning Y, et al. Metal flowing behavior during welding process of porthole extrusion for complicate AL-alloy profile
[J]. Journal of Materials Engineering,2014, (9): 68-75.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-62920652 +86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备09032115号-5