网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
推进剂贮箱零件侧翻孔电磁成形数值模拟
英文标题:Numerical simulation on the side hole flanging electromagnetic forming for propellant tank parts
作者:苏红亮1 黄亮1 李建军1 马飞2 林磊2 
单位:华中科技大学 中国航天科技集团公司 
关键词:推进剂贮箱 电磁成形 侧翻孔 松散耦合 ANSYS 
分类号:TG391
出版年,卷(期):页码:2016,41(12):53-61
摘要:

 基于ANSYS多物理场耦合模块,采用松散耦合法,建立了推进剂贮箱零件侧翻孔电磁成形的有限元模型,揭示了坯料电磁力、应力、应变和厚度等的分布规律及其随时间变化规律,并优化了放电电压和成形线圈内径等工艺参数。分析结果表明:坯料在圆角区域应力和应变较大,且厚度减薄量较大;坯料圆角处残余应力较大。放电电压增大,坯料变形量增加,但厚度减薄量相应增加;线圈内径增大,坯料与模具最大间隙、最大夹角以及坯料最小厚度均先减小后增大。得到的放电电压和成形线圈内径优化值分别为40 kV和40 mm。

 A finite element model of the side hole flanging for propellant tank parts in the electromagnetic forming process was established based on the multi-physics coupling module and the loose coupling method, and the distribution of the electromagnetic force, stress, strain and thickness of the blank and their variations with time were revealed. Furthermore, the process parameters of the discharge voltage and the coil inner diameter were optimized. The analysis results show that the stress and strain of blank are bigger at the round corner area with a larger thickness reduction and a larger residual stress at the round corner area. With the increase of the discharge voltage, the deformation of blank increases, while the thickness reduction increases correspondingly. As the coil inner diameter increases, the maximum clearance and the maximum angle between die and blank, and the minimum thickness of the blank decrease firstly and then increase. Finally, the optimum values of the discharge voltage and the coil inner diameter are 40 kV and 40 mm respectively.

基金项目:
国家重点基础研究发展计划资助项目(2011CB012802);国家自然科学基金资助项目(51575206);中国航天科技集团公司航天科技创新基金资助项目(CASC150704)
作者简介:
作者简介:苏红亮(1992-),男,博士研究生 E-mail:sue@hust.edu.cn 通讯作者:黄亮(1981-),男,博士,副教授 E-mail: huangliang@hust.edu.cn
参考文献:

 


 


[9]Noh H G, Song W J, Kang B S, et al. 3-D numerical analysis and design of electromagnetic forming process with middle block die
[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(5): 855-865.

 


[10]Xiong W, Wang W, Wan M, et al. Geometric issues in V-bending electromagnetic forming process of 2024-t3 aluminum alloy
[J]. Journal of Manufacturing Processes, 2015, 19: 171-182.

 


[11]Shang J, Wilkerson L, Hatkevich S. Hemming of aluminum alloy sheets using electromagnetic forming
[J]. Journal of Materials Engineering and Performance, 2011, 20(8): 1370-1377.

 


[12]Oliveira D A, Worswick M J, Finn M, et al. Electromagnetic forming of aluminum alloy sheet: free-form and cavity fill experiments and model
[J]. Journal of Materials Processing Technology, 2005, 170(1): 350-362.

 


[13]李春峰,于海平,赵志衡,等.基于ANSYS电磁成形耦合场有限元分析方法
[A].第九届全国塑性工程学术年会
[C].太原,2005.

 

Li C F, Yu H P, Zhao Z H, et al. Finite element analysis methods of coupled field in electromagnetic forming based on ANSYS
[A]. Proceedings of 9th National Conference on Technology of Plasticity
[C]. Taiyuan, 2005.

 


[14]崔晓辉, 莫健华, 何文治. 基于松散耦合法的电磁管件胀形3D模拟
[J]. 中国有色金属学报, 2011, 21(11): 2896-2902.

 

Cui X H, Mo J H, He W Z. 3D simulation of electromagnetic tube bulging based on loose coupling method
[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(11): 2896-2902.

 


[15]黄亮, 骆文勇, 刘贤龙, 等. 大型复杂型面铝合金翻边件电磁成形塑性流动行为研究
[J]. 机械工程学报, 2013, 49(24):24-29,38. 

 

 

Huang L, Luo W Y, Liu X L, et al. Research on plastic flow behaviors for hole flanging part of aluminum alloy with large complicated profiles by electromagnetic forming
[J]. Journal of Mechanical Engineering,2013, 49(24): 24-29, 38. 

 


[16]Luo W Y, Huang L, Li J J, et al. A novel multi-layer coil for a large and thick-walled component by electromagnetic forming
[J]. Journal of Materials Processing Technology, 2014, 214(11): 2811-2819.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9