网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TA12A高温钛合金超塑性工艺参数实验研究
英文标题:Experimental research on super-plastic parameters of high temperature titanium alloy TA12A
作者:徐凯1  韩维群1 赛音2 李保永1 
单位:1. 北京航星机器制造有限公司 2.空军驻京西地区军事代表室 
关键词:TA12A钛合金 超塑成形 高温拉伸试验 
分类号:
出版年,卷(期):页码:2016,41(7):51-55
摘要:

 为了研究TA12A高温钛合金的超塑性工艺参数,利用2 mm厚板材进行了不同温度和不同初始应变速率下的高温拉伸试验,并观察了920 ℃拉伸试样的显微组织。结果表明,TA12A板材在900~940 ℃范围内以不同初始速率拉伸的伸长率均超过400%,具有良好的超塑拉伸性能。在温度为940 ℃和初始应变速率为1×10-3 s-1时,断后伸长率最大可达785%;考虑在实际生产过程中温度越高则高温驻留时间越长,对成形后的材料性能降低越明显,最终确定超塑成形的工艺参数为:温度920 ℃,初始应变速率1×10-3 s-1;在超塑变形过程中,拉伸段的晶粒尺寸变大是保温时间和应变诱导的共同作用结果。

 In order to study the super-plastic parameters of high temperature titanium alloy TA12A, the high temperature tensile tests with 2 mm thick plates were carried out under different temperatures and initial strain rates, the microstructure of specimen was studied at 920 ℃. The results show that  the total elongation rates of TA12A sheet are all above 400% at 900-940 ℃ and good super-plastic tensile properties are obtaind. Elongation rate of 785% is obtained at 940 ℃ under the initial strain rate of 1×10-3 s-1. Considering that the higher temperature leads to longer keeping time and more obvious reduction of the material properties after forming in actual production process, the final process parameters are determined as temperature 920 ℃ and initial strain rate 1×10-3 s-1. The grain size growth of stretch part is affected by both holding time and stain during super-plastic deformation. 

基金项目:
作者简介:
徐凯(1989-),男,硕士,助理工程师
参考文献:

[1]莱因斯 C,皮特尔斯M. 钛与钛合金 [M]. 陈振华译. 北京: 化学工业出版社, 2005.


Leyens C, Peters M. Titanium and Titanium Alloys [M].  Translated by Chen Z H. Beijing: Chemical Industry Press, 2005.

[2]杜予晅,郝芳,雷锦文,等. 锻造工艺对TA12A钛合金组织性能的影响规律研究 [J]. 锻压技术,2015,40(8):124-127.

Du Y X, Hao F, Lei J W, et al. Study on influence of forging process on microstructure and properties of titanium alloy TA12A [J]. Forging & Stamping Technology, 2015, 40(8):124-127.

[3]文九巴,杨蕴林,杨永顺,等. 超塑性应用技术 [M]. 北京: 机械工业出版社,2005.

Wen J B, Yang Y L, Yang Y S, et al. Superplastic Application Technology [M]. Beijing:China Machine Press, 2005.

[4]苑世剑. 轻量化成形技术 [M]. 北京:国防工业出版社,2010.

Yuan S J . Lightweight Forming Technologies [M]. Beijing: National Defense Industry Press, 2010.

[5]李志强, 郭和平. 超塑成形/扩散连接技术的应用进展和发展趋势[J]. 航空制造技术, 2010,(8):32-35.

Li Z Q, Guo H P . Application progress and development tendency of superplastic forming/diffusion bonding technology [J]. Aeronautical Manufacturing Technology, 2010,(8):32-35.

[6]中国质量协会. QC小组基础教材[M].2版. 北京:中国社会出版社,2000.

China Association for Quality. Basic Course of QC Groups[M]. Second Edition. Beijing: China Society Press, 2000.

[7]刘泾源. Ti750高温钛合金超塑成形性能及组织演变研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.

Liu J Y . Superplastic Formability and Microstructure Evolution of Ti750 High Temperature Titanium Alloy [D]. Harbin: Harbin Institute of Technology, 2011.

[8]赵子博, 葛敬鲁, 陈志勇, 等. Ti-55钛合金板材的超塑性变形行为 [J]. 中国有色金属学报, 2010, 20(S1):847-851.

Zhao Z B, Ge J L, Chen Z Y, et al. Superplastic deformation of Ti-55 alloy sheet [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1):847-851.

[9]宋玉泉. 超塑拉伸变形的力学解析 [J]. 机械工程学报, 2003, 39(10): 64-72.

Song Y Q. Mechanical analysis of superplastic tensile forming [J]. Chinese Journal of Mechanical Engineering, 2003, 39(10): 64-72. 

[10]牛红志, 张于胜, 陈玉勇. β型γ-TiAl合金的组织特征及其超塑性变形行为[J]. 稀有金属材料与工程, 2015, 44(4):892-895.

Niu H J, Zhang Y S, Chen Y Y. Microstructure characteristics and superplastic behavior of β-solidifying γ-TiAl based alloys[J]. Rare Metal Materials and Engineering, 2015, 44(4):892-895.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9