网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
工业纯钛TA1薄板杯突试验及其数值模拟
英文标题:Erichsen test and numerical simulation of commercial pure titanium TA1 sheets
作者:梁鹏飞1 2 陈拂晓1 2 郭俊卿1 2 
单位:1.河南科技大学 2.有色金属共性技术河南省协同创新中心 
关键词:工业纯钛 杯突试验 IE值 最大凸模力准则 数值模拟 
分类号:
出版年,卷(期):页码:2016,41(4):45-48
摘要:

在BHB-80板料双向拉伸试验机上,对厚度分别为0.8,1.0和2.0 mm的工业纯钛TA1薄板进行了室温条件下的杯突试验。试验结果表明,3种厚度TA1薄板的杯突值(IE值)分别为11.00,11.10和11.90 mm,并且随着板料厚度的增加,杯突值随之增加。此外,在试验基础上利用有限元分析软件对TA1板的成形过程进行数值模拟,采用最大凸模力准则获得了虚拟的杯突值,分析了变形过程中等效应变的分布,并预测了试件开裂的部位。模拟结果表明,虚拟杯突值要小于试验获得的杯突值,但不改变板厚对杯突值的影响规律;随着变形增加,最大等效应变区发生转移;预测的开裂部位与试验结果一致。

The Erichsen tests of commercial pure titanium TA1 sheets were conducted by BHB-80 biaxial tensile tester under room temperature with thicknesses of 0.8, 1.0 and 2.0 mm respectively. The test results show that their cupping values(IE values) are 11.00,11.10 and 11.90 mm respectively,and the IE values increase with the increase of sheet thickness. In addition, based on the experiment, the forming processes of TA1 sheets were simulated by finite element method (FEM), and virtual IE values were obtained by the maximum punch force criterion (MPFC). Furthermore, the distribution of the effective strain was analyzed, and the fracture positions were predicted. The simulation results show that the virtual IE value is smaller than that obtained by testing, and the influence of sheet thickness on it is unchanged. With the increase of deformation, the areas of the maximum effective strain shifts, and the predicted fracture position is the same as the experimental results.

基金项目:
河南省基础与前沿技术研究计划项目(112300413227)
作者简介:
梁鹏飞(1990-),男,硕士研究生
参考文献:

[1]Qiu Zheng, Tetsuhide Shimizu, Tomomi Shiratori, et al. Tensile properties and constitutive model of ultrathin pure titanium foils at elevated temperatures in microforming assisted by resistance heating method[J]. Materials & Design, 2014, 63: 389-397.

[2]Zhang Zhiyong, Yang He, Li Heng, et al. Quasi-static tensile behavior and constitutive modeling of large diameter thin-walled commercial pure titanium tube[J]. Materials Science and Engineering A, 2013, 569: 96-105.

[3]Sun Qiaoyan, Song Xiping, Gu Haicheng. Twinning induced plasticity in commercially pure titanium at low temperature[J]. Transactions of Nonferrous Metals Society of China, 2001, 11(1): 132-134.

[4]Zhang Xuhu, TangBing, Zhang Xialu, et al. Microstructure and texture of commercially pure titanium in cold deep drawing[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(3): 496-502.

[5]理有亲,林兆荣. 钛板冲压成形技术[M]. 北京:国防工业出版社,1982.

Li Y Q, Lin Z R. Titanium Sheet Stamping Technology[M]. Beijing: National Defence Industry Press, 1982.


[6]梁炳文,陈孝戴. 板金成形性能[M]. 北京:机械工业出版社,1999.

Liang B W, Chen X D. Sheet Metal Formability[M].Beijing:  China Machine Press,1999.

[7]GB/T 4156—2007,金属材料薄板和薄带埃里克森杯突试验[S].

GB/T 4156—2007, Metallic materials-Sheet and strip-Erichsen cupping test[S].

[8]余海燕,沈嘉怡,王友. 屈服准则和硬化模型对5052铝板回弹仿真的影响[J]. 材料科学与工艺,2015, 23(3): 29-33. 

Yu H Y, Shen J Y, Wang Y. Influence of yield criterion and hardening model on springback simulation for 5052 aluminum alloy[J]. Materials Science and Technology, 2015, 23(3): 29-33.

[9]王辉. 成形极限图的获取方法与其在金属板料成形中的应用 [D]. 南京:南京航空航天大学,2011.

Wang H. Forming Limit Diagram of the Access Method and Its Application in Sheet Metal Forming[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.

[10]何维均,程明,张士宏,等. AZ31镁合金板材高温杯突试验及其数值模拟[J]. 轻合金加工技术,2009, 37(10): 34-38. 

He W J, Cheng M, Zhang S H, et al. Erichsen test and numerical simulation of AZ31 magnesium alloy sheets at various temperatures[J]. Light Alloy Fabrication Technology, 2009, 37(10): 34-38.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9