网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于有限元法的空心铝型材挤压过程瞬态分析
英文标题:Analysis on transient extrusion process of hollow aluminum profile based on finite element method
作者:路帅1 王永晓2 娄淑梅2 苏春建2 
单位:1.山东兖矿轻合金有限公司 2.山东科技大学 
关键词:挤压 分流模具 非稳态模拟 有限元 模具优化 
分类号:
出版年,卷(期):页码:2015,40(10):130-138
摘要:

采用有限元软件,对一非对称截面列车上侧梁型材挤压分流、焊合直至稳态挤出的整个非稳态过程进行了数值模拟。着重研究了挤压成形过程中变形体的速度、温度、应变速率等物理场量的分布与变化情况,以及模具应力分布情况。针对模拟过程中出现的挤出物前端存在严重变形的问题,对模具的二级焊合室尺寸、阻流块高度以及工作带尺寸作出优化。模具结构优化后模孔出口截面速度均匀性得到明显改善,其速度差从22 mm·s-1减小到7 mm·s-1。通过分析等效应变速率与温度分布的关系,发现坯料温度升高所需的热量主要来源于坯料变形产生的塑性变形能。通过模具应力分析得知模具在各挤压阶段的应力分布情况。

The non-steady extrusion process from the dividing, welding stages to steady extrusion for an upside beam on the train with unsymmetrical cross-sectional profile was numerically simulated by FEM (finite element method). The distribution and variation of the velocity, temperature and strain rate for the deformation material were researched during the whole non-steady extrusion process. The die stress distribution were analyzed too. For the issue of severe deformation of extrusion head in the whole extrusion process simulation,the optimizations for the second chamber structure sizes, baffle-block height and bearing length were performed. As a result the outlet velocity uniformity was improved obviously. The velocity difference between the maximum and the minimum reduces from 22 mm·s-1 to 7 mm·s-1. After analyzing the distribution relationship between effective strain rate and temperature,it is found that the quantity of heat needed for blank temperature rising is mainly derived from the energy of plastic deformation generated by blank deformation. The stress distribution of die in each stage of extrusion is obtained by die stress analysis.

基金项目:
国家自然科学基金资助项目(51305241);山东省自然科学基金资助项目(ZR2014JL040)
作者简介:
路帅(1982-),男,硕士,工程师
参考文献:

[1[Staley J T, Liu J, Hunt Jr W H. Aluminum alloys for aerostructures[J]. Advanced Materials and Processes, 1997, 152(4):10-17.

[2]谢建新, 刘静安. 金属挤压理论与技术[M]. 北京:冶金工业出版社, 2001.

Xie J X, Liu J A. Theory and Technology of Metals Extrusion[M]. Beijing: Metallurgical Industry Press, 2001.

[3]Jun L, Yang J G, Yan D J, et al. Rotating extrusion technique and its effect on quality of aluminum alloy thin-plate weldments[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(2): 183-188.

[4]程磊, 谢水生, 黄国杰, 等. 分流组合模挤压过程的有限元分步模拟[J]. 系统仿真学报, 2008, 20(24): 6603-6606.

Cheng L, Xie S S, Huang G J, et al. Multi-stage finite element simulation of porthole die extrusion process[J]. Journal of System Simulation, 2008, 20(24): 6603-6606.

[5]秦升学, 邢国良, 娄淑梅, 等. 基于 DEFORM-3D 的空心铝型材挤压过程有限元分析[J]. 热加工工艺, 2013, 42(5):81-83.

Qin S X, Xing G L, Lou S M, et al. Finite element analysis on extrusion process of hollow aluminum profile based on DEFORM-3D[J]. Hot Working Technology, 2013, 42(5):81-83.

[6]Lee J M, Kim B M, Kang C G. Effects of chamber shapes of porthole die on elastic deformation and extrusion process in condenser tube extrusion[J]. Materials & Design, 2005, 26(4): 327-336.

[7]林高用, 冯迪, 刘健, 等. 铝合金方管分流焊合挤压过程的有限元分析[J]. 中国机械工程, 2009, 20(24): 2993-2998.

Lin G Y, Feng D, Liu J, et al. FE Analysi s of the extrusion and welding process in porthole die for an aluminum alloy square tube[J]. China Mechanical Engineering, 2009, 20(24): 2993-2998.

[8]Zhao H E, Wang H, Wang M, et al. Simulation of extrusion process of complicated aluminium profile and die trial[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1732-1737.

[9]He Y F, Xie S S, Cheng L, et al. FEM simulation of aluminum extrusion process in porthole die with pockets[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6): 1067-1071.

[10]邸利青, 张士宏. 分流组合模挤压过程数值模拟及模具优化设计[J]. 塑性工程学报, 2009, 16(2): 123-127.

Di L Q, Zhang S H. Porthole die extrusion process numerical simulation and optimal die design[J]. Journal of Plasticity Engineering, 2009, 16(2): 123-127.

[11]Fang G, Zhou J, Duszczyk J. Effect of pocket design on metal flow through single-bearing extrusion dies to produce a thin-walled aluminium profile[J]. Journal of Materials Processing Technology, 2008, 199(1): 91-101.

[12]吴向红, 赵国群, 孙胜, 等. 挤压速度和摩擦状态对铝型材挤压过程的影响[J]. 塑性工程学报, 2007, 14(1): 36-41.

Wu X H, Zhao G Q, Sun S, et al. The influence of extrusion speed and frictional status on aluminum profile extrusion processes[J]. Journal of Plasticity Engineering, 2007, 14(1): 36-41.

[13]徐永礼, 庞祖高, 唐夏翔. 基于 Deform-3D 的异型铝型材挤压模具开裂失效分析与参数优化[J]. 锻压技术, 2014, 39(4): 97-103.

Xu Y L, Pang Z G, Tang X X. Cracking failure analysis and parameter optimization of special-shaped aluminum profile extrusion die base on Deform-3D[J]. Forging & Stamping Technology, 2014, 39(4): 97-103.

[14]赵斌斌, 汤宏群, 湛永钟, 等. 半空心铝型材挤压过程数值模拟与工艺参数优化[J]. 锻压技术, 2014, 39(9): 131-136.

Zhao B B, Tang H Q, Zhan Y Z, et al. Numerical simulation of the extrusion process and optimization of the technological parameters for half-hollow aluminum profile[J]. Forging & Stamping Technology, 2014, 39(9): 131-136.

[15]Liu P, Xie S S, Cheng L. Die structure optimization for a large, multi-cavity aluminum profile using numerical simulation and experiments[J]. Materials & Design, 2012, 36: 152-160.

[16]Chen H, Zhao G Q, Zhang C S, et al. Numerical simulation of extrusion process and die structure optimization for a complex aluminum multicavity wallboard of high-speed train[J]. Materials and Manufacturing Processes, 2011, 26(12): 1530-1538.

[17]Chen L, Zhao G Q, Yu J Q, et al. Analysis and porthole die design for a multi-hole extrusion process of a hollow, thin-walled aluminum profile[J]. The International Journal of Advanced Manufacturing Technology, 2014,74(1):1-10.

[18]谢建新, 黄东男, 李静媛, 等. 一种空心型材分流模挤压焊合过程数值模拟技术: 中国,ZL20091008960.7[P].2009-12-16.

Xie J X, Huang D N, Li J Y, et al. A simulation technology for solving welding problem during porthole die extrusion process: China: ZL20091008960.7[P]. 2009-12-16.

[19]黄东男, 李静媛, 张志豪, 等. 方形管分流模双孔挤压过程中金属的流动行为[J]. 中国有色金属学报, 2010, 20(3): 487-495.

Huang D N, Li J Y, Zhang Z H, et al. Metal flowing behaviors during diplopore extrusion of square tube with porthole die[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(3): 487-495.

[20]Sellars C M, Tegart W J M G. Hot workability[J]. International Metallurgical Reviews, 1972, 17(1): 1-24.

[21]Lou S M, Zhao G Q, Wang R, et al. Numerical simulation of steady and unsteady aluminum profile extrusion processes using finite volume method[J]. Engineering Computations, 2008, 25(6): 589-605.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9