网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
通道截面形状对纯钛室温ECAP变形影响的有限元分析
英文标题:Finite element analysis on influence of the shape of channel section on ECAP for pure titanium at room temperature
作者:张金龙1 赵西成2 杨西荣2 谢辉1 
单位:1.西安航空学院  2.西安建筑科技大学 
关键词:截面形状 等径弯曲通道变形 纯钛 变形行为 
分类号:
出版年,卷(期):页码:2015,40(4):137-412
摘要:

采用有限元软件Deform-3D对室温纯钛等径弯曲通道变形(ECAP)过程进行数值模拟,分析了不同等通道截面形状条件下载荷变化、变形行为以及等效应变分布情况。结果表明:不同截面形状试样随着通道截面圆角增大,端部效应有所增加,试样与出口通道上壁之间的缝隙增大;不同通道截面挤压的行程载荷曲线趋势一致,常用的方形截面(R=0 mm)ECAP挤压时载荷最大;ECAP挤压后,试样纵向上等效应变从中部向两端递减,竖直方向上等效应变从上到下逐渐下降;方形(R=0 mm)和圆形(R=10 mm)截面ECAP挤压的等效应变较高,特别是圆形截面ECAP挤压心部等效应变要高于外表,这有别于其他塑性变形形式。

The process of the equal channel angular pressing (ECAP) for pure titanium at room temperature was simulated by the finite element software Deform-3D. The load variety, deformation behavior and the effective strain distribution were analyzed with the different shapes of same channel section. The results show that the end effect of the different section shapes of specimen increases somewhat, and the gap between sample and the above wall of export channel enlarges with the increase of channel section fillet, however, the load-stroke curve tendencies are consistent for extrusion of different channel sections. The load of the common square section (R=0 mm) by ECAP is the maximum; the vertical effective strain declines from the middle to both ends and the lateral effective strain decreases gradually from top to bottom after ECAP; the effective strains of square (R=0 mm) and circular (R=10 mm) section samples after ECAP become higher, especially the effective strain of core in circular section sample after ECAP is higher than that of appearance, which is different to other forms of plastic deformation.

基金项目:
国家自然科学基金资助项目(51474170);国家高等学校博士学科点专项科研基金资助项目(20116120110012)
作者简介:
张金龙(1976-),男,硕士,讲师
参考文献:

[1]Segal V M, Reznikov V I, Drobyshevkiy A E, et al. Plastic working of metals by simple shear [J]. Russian Metallurgy, 1981. (1): 99-105.


[2]Valiev R Z, Korznikov A V, Mulyukov R R, et al. Structure and properties of ultrafine-grained materials produced by severe plastic deformation [J]. Materials Science and Engineering, 1993, 168(2): 141-148.


[3]刘晓峰,张敏刚,孙述利,等. 数值模拟内圆角半径对AZ31镁合金等径角挤压过程的影响[J]. 特种铸造及有色合金,2010,30(6):511-513.


Liu X F, Zhang M G, Sun S L, et al. Effects of internal fillet radiuses on ECAE (Equal Channel Angular Extrusion) AZ31 magnesium alloy based on FEM (Finite Element Method) [J]. Special Casting & Nonferrous Alloys, 2010, 30(6):511-513.


[4]温石坤,胡治流,赵小莲,等. 等径角挤压中内角半径作用的有限元模拟[J]. 热加工工艺,2010,39(7):91-94.


Wen S K, Hu Z L, Zhao X L, et al. Finite element analysis on effect of inner corner radius in equal channel angular pressing [J]. Hot Working Technology, 2010, 39(7):91-94.


[5]郑立静,陈昌麒,周铁涛,等. ECAP细晶机制及对纯铝显微组织和力学性能的影响[J]. 稀有金属材料与工程,2004,33(12):1325-1328.


Zheng L J, Chen C Q, Zhou T T, et al. Grain-refining mechanism of ECAP and its effect on microstructures and mechanical properties of pure Al [J]. Rare Metal Materials and Engineering, 2004, 33(12):1325-1328.


[6]边丽萍,陈光,梁伟,等. 多相合金的ECAP挤压路径优化设计[J]. 材料导报,2013,27(4):11-13.


Bian L P, Chen G, Liang W, et al. Design and optimization of ECAP routes for multi-phase alloys [J]. Materials Review,2013, 27(4):11-13.


[7]于彦东,初德胜. 不同温度ECAP对ZK60合金力学性能的影响[J]. 热加工工艺,2012,41(19):27-28.


Yu Y D, Chu D S. Influence of different ECAP temperatures on mechanical properties of ZK60 Mg alloy [J]. Hot Working Technology, 2012, 41(19):27-28.


[8]任国成,赵国群. 变形温度对AZ31镁合金等通道转角挤压变形行为的影响[J]. 中国有色金属学报,2013,23(7):1789-1795.


Ren G C, Zhao G Q. Effects of deformation temperature on deformation behavior of AZ31 magnesium alloy during equal channel angular pressing [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(7):1789-1795.


[9]张萍,马爱斌,林萍华. 等通道转角挤压道次和温度对Cu-Al-Be-B合金组织及力学性能的影响[J]. 热加工工艺,2013,42(23):32-35.


Zhang P, Ma A B, Lin P H. Effects of passes and temperature on microstructure and mechanical properties of Cu-Al-Be-B alloy in equal channel angular pressing [J]. Hot Working Technology, 2013, 42(23):32-35.


[10]孙前江,王高潮,黄映霞. 摩擦对6061铝合金等径角挤压变形的影响[J]. 特种铸造及有色合金,2011,31(5):397-399.


Sun Q J, Wang G C, Huang Y X. Effects of friction on the deformation of 6061 aluminum alloy during equal channel angular pressing (ECAP) process [J]. Special Casting & Nonferrous Alloys, 2011, 31(5):397-399.


[11]马勇,赵亚培,彭程,等. ECAP中摩擦因数对7075铝合金变形及组织的影响[J]. 特种铸造及有色合金,2014,34(2):135-139.


Ma Y, Zhao Y P, Peng C, et al. Effects of friction factor on the deformation and microstructure of 7075 aluminum alloy during ECAP [J]. Special Casting & Nonferrous Alloys, 2014, 34(2):135-139.


[12]赵健,赵西成,杨西荣,等. 挤压速度对工业纯钛室温ECAP变形孪晶的影响[J]. 材料科学与工程学报,2011,29(6):906-910.


Zhao J, Zhao X C, Yang X R, et al. Influences of extrusion speed on twins of commercially pure titanium processed by ECAP at room temperature [J]. Journal of Materials Science and Engineering, 2011, 29(6):906-910.


[13]张国平. 应变速度对等通道转角变形纯铝组织细化的影响[J]. 材料热处理学报,2008,29(1)1:111-115.


Zhang G P. Influence of strain rate on microstructure of pure aluminum in the process of equal channel angular pressing [J]. Transactions of Materials and Heat Treatment, 2008, 29(1):111-115.


[14]杨西荣,赵西成,王成,等. 120°模具室温8道次ECAP变形纯钛的组织演化[J]. 航空材料学报,2011,31(1):25-30.


Yang X R, Zhao X C, Wang C, et al. Microstructural evolution of CP-Ti processed by ECAP at room temperature using 120°die [J]. Journal of Aeronautical Materials, 2011, 31(1):25-30.


[15]于彦东,周浩. MB15合金等通道转角挤压组织模拟和实验分析[J]. 中国有色金属学报,2011,21(2):296-302.


Yu Y D, Zhou H. Simulation and experiment analysis of grain structure of MB15 alloy prepared by equal-channel angular pressing [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(2):296-302.


[16]Iwahashi Y, Wang J, Horiat Z, et al. Principle of equal channel angular pressing for the processing of ultrafine grained materials [J]. Scripta. Materialia, 1996, 35(2):143-146.


[17]周超,彭必友,沈冰,等. 基于变形均匀性的AZ31镁合金ECAP多道次成形工艺研究[J]. 锻压技术,2013,38(2):145-151.


Zhou C, Peng B Y, Shen B, et al. Study of forming process for AZ31 magnesium alloy during multiple passes ECAP based on homogeneous deronnation [J]. Forging & Stamping Technology, 2013, 38(2):145-151.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9