网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
微型车后桥液力成形工艺的理论与仿真研究
英文标题:Theory and simulation study on hydraulic bulging process of mini-car rear axle
作者:张豫宁 李健 李彬 袁杰 
单位:广西科技大学 
关键词:后桥 液力成形 数值模拟 加载路径 退火 
分类号:TG386;TG394
出版年,卷(期):页码:2014,39(9):143-149
摘要:

为了对桥壳管件在不同加载路径下的成形情况及变形规律进行预测,达到降低管件胀形工艺的开发成本及试验费用的目的,采用理论研究与仿真分析相结合的方法对胀形桥壳的失效形式、壁厚分布以及加载路径进行研究。基于ABAQUS有限元软件对铝合金管件的胀形过程进行数值模拟,通过将实验结果与仿真分析结果的对比,验证有限元模型的正确性;以此为基础,针对微型车后桥胀形工艺进行数值模拟,通过分析、总结,获取了合理的加载路径。研究结果表明,后桥预胀形和终胀形合理的加载路径分别为常压47 MPa和多线性加载路径4,终胀形时进行退火处理,减小了管件在预胀形过程中产生的残余应力,胀形结果也更加理想。

Theoretical research and simulation analysis were combined together to study the failure modes, and thickness distribution of the wall and load paths during the hydraulic bulging process of rear axle in order to predict the forming situation and regular patterns of rear axle tube under various load paths, which reduces the developmental and experimental cost for the bulging process. The bulging process of aluminum alloy tube was simulated using ABAQUS finite element software. Simulated results were verified by the experimental results. Based on the above results, the bulging process of mini-car rear axle was numerically simulated and the reasonable load paths were obtained through analysis and summary. The results show that reasonable load paths in pre-forming and final bulging stage are constant pressure 47 MPa and multi-linear loading path 4, respectively. The rear axle after the final bulging stage is treated with annealing to reduce the residue stress from pre-forming so that a better bulging result is obtained.

基金项目:
广西重点实验室建设项目(13-051-38)
作者简介:
张豫宁(1989-),男,硕士研究生
参考文献:


[1]梁晨, 程嘉, 王连东,等.汽车桥壳液压胀形的数值模拟及其实验研究[J]. 锻压技术, 2009, 34(1): 157-160.Liang C, Cheng J, Wang L D, et al. Study on numerical simulation and test of hydro-bulging axle housings [J]. Forging & Stamping Technology, 2009, 34(1): 157-160.
[2]Xavier E, Mohamed S C, Hakim N. Analysis and design of hydroformed thin-walled tubes using enhanced one-step method[J]. International Journal of Advanced Manufacture Technology, 2012, 59: 507-520.
[3]Wu Y J, Xue Y, Duan J N. Optimization approach hydroforming car beam billets based grey system theory[J]. Journal of Beijing Institute of Technology, 2011, 20(1): 48-53.
[4]唐巧生, 王谌, 李华冠.5083铝合金三通内高压成形模拟研究[J]. 锻压技术, 2012, 37(1): 81-86.Tang Q S, Wang C, Li H G. High inner pressure hydroforming simulation and experiment on Al 5083 T-shape[J]. Forging & Stamping Technology, 2012, 37(1): 81-86.
[5]梁晨, 刘唯唯, 陈国强. 半滑动式液压胀形汽车桥壳的数值模拟及成形实验[J]. 中国机械工程, 2012, 23(4): 479-484.Liang C, Liu W W, Chen G Q. Numerical simulation and test of half-sliding hydroforming axle housing[J].China Mechanical Engineering, 2012, 23(4): 479-484.
[6]刘钢, 何祝斌, 齐军,等. 轻合金管材热态内压成形性能测试及样件试制[J]. 锻压技术, 2008, 33(3): 48-51.Liu G, He Z B, Qi J,et al. Hydro-formability evaluation of light-weight alloy tubes and manufacturing of tubular components at elevated temperature[J]. Forging & Stamping Technology, 2008, 33(3): 48-51.
[7]张永强, 胡伟民, 赵国超,等. 钛合金无缝T型管件液压胀形[J]. 锻压技术, 2010, 35(1): 63-65. Zhang Y Q, Hu W M, Zhao G C, et al. Hydraulic bulging of titanium alloy seamless T-type tube fittings[J]. Forging & Stamping Technology, 2010, 35(1): 63-65.
[8]章凯,肖小亭,温华典,等. 单侧双排四通管液压胀形壁厚与补料规律研究[J]. 锻压技术, 2011, 36(5): 51-54.Zhang K, Xiao X T, Wen H D, et al. Research on thickness and feeding rule for unilateral double four-way tube hydroforming[J]. Forging & Stamping Technology, 2011, 36(5): 51-54.
[9]Aydemir A, De Vree J H P, Brekelmans W A M. An adaptive simulation approach designed for tube hydroforming processes[J]. Journal of Materials Processing Technology, 2005, 159: 303-310.
[10]吴丛强, 杨连发. 一种新型管材液压胀形装置的设计[J]. 锻压技术, 2009, 34(1): 109-112.Wu C Q, Yang L F. Design of a new tube hydroforming tool[J]. Forging & Stamping Technology, 2009, 34(1): 109-112.
[11]汪奇超, 雷君相, 骆协海. 铝合金防碰撞吸能管液压成形加载路径研究[J]. 锻压技术, 2011, 36(6): 55-58.Wang Q C, Lei J X, Luo X H. Research on hydraulic forming loading paths of aluminum alloy anti-collision energy absorbing tube[J]. Forging & Stamping Technology, 2011, 36(6): 55-58.
[12]Yuan S J, Liu G, Huang X R. Hydroforming of typical hollow components[J]. Journal of Materials Processing Technology, 2004, 151: 203-207.
[13]温华典, 肖小亭, 章凯,等. 空调联箱多通管内高压成形金属流动规律研究[J]. 锻压技术, 2011, 36(3): 42-45.Wen H D, Xiao X T, Zhang Kai,et al. Research on metal flow pattern of multi-way tube hydro forming for air hundling unit[J]. Forging & Stamping Technology, 2011, 36(3): 42-45.
[14]秦乐,孟继安,李志信.交叉缩放椭圆管冷压成形的数值模拟[J].工程力学, 2007, 24(2): 172-177.Qin Y, Meng J A, Li Z X. Numerical analysis of cold forming for alternating elliptical axis tube[J]. Engineering Mechanics, 2007, 24(2):172-177.


[15]高铁军, 刘占军, 王忠金. 筒坯端部条件对薄壁零件粘性介质外压缩径的影响[J]. 锻压技术, 2011, 36(1): 124-127.Gao T J, Liu Z J, Wang Z J. Influences of conditions at tube blank end on viscous medium outer pressure necking of thin-wall parts[J]. Forging & Stamping Technology, 2011, 36(1): 124-127.
[16]唐巧生, 王谌, 李鸣. 摩擦条件对无缝异径管冷成形的影响研究[J]. 锻压技术, 2011, 36(6): 145-148.Tang Q S, Wang C, Li M. Effect of friction condition on seamless reducer cold forming process[J]. Forging & Stamping Technology, 2011, 36(6): 145-148.
[17]Yang B, Zhang W G, Li S H. Analysis and finite element simulation of the tube bulge hydroforming process[J]. International Journal of Advanced Manufacturing Technology, 2006, 29: 453-458.
[18]Lang L H, Li H L, Yuan S J. Investigation into the pre-formings effect during multi-stages of tube hydroforming of aluminum alloy tube by using useful wrinkles[J]. Journal of Materials Processing Technology, 2009, 209: 2553-2563.
[19]高鹏飞.汽车后桥壳液压胀形工艺的数值仿真[D].秦皇岛:燕山大学,2005.Gao P F. Numerical Simulation of Hydroforming Process for Automobile Rear Axle Housing[D]. Qinhuangdao: Yanshan University, 2005.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9