网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
多加强肋胀形可行性补充条件及有限元数值模拟
英文标题:Feasibility supplementary criterion and finite element numerical simulation of bulging for multiple reinforcement ribs
作者:管爱枝 施于庆 
单位:浙江科技学院 
关键词:金属板壳件 多加强肋 胀形 数值模拟 有限元法 ANSYS/LS-DYNA 
分类号:TG386.32
出版年,卷(期):页码:2013,38(3):165-169
摘要:

金属板壳件的多加强肋需一次成形,而现有单加强肋胀形可行性条件不能直接用来判断多加强肋能否一次成功胀形。将多加强肋间区域视为反向加强肋,在其许用变形程度比正向加强肋小的前提下,提出了多加强肋胀形可行性的补充条件。建立了单加强肋、近距分布及远距分布多加强肋的3种板壳件模型,运用ANSYS/LS\|DYNA完成了其胀形成形的有限元数值模拟。厚度减薄率和成形极限图的模拟结果验证了多加强肋胀形可行性补充条件的有效性。多加强肋之间的距离是决定其能否一次胀形成形的关键因素。

Multiple reinforcement ribs of metal shell parts should be made by one bulging procedure, while the current bulging feasibility criterion used for single reinforcement rib can not be directly used to determine whether multiple reinforcement ribs can be successfully bulged for the first time. After the regions between the positive reinforcement ribs were regarded as reverse reinforcement ribs, a feasibility supplementary criterion of bulging for multiple reinforcement ribs was proposed based on the supposition that the maximum bulging increment of reverse ribs should be smaller than that of positive ribs. Three kinds of metal shell parts were modeled, with single reinforcement rib, multiple ribs with small center distance and multiple ribs with large center distance, respectively. And the numerical simulation of the bulging process for those parts was carried out through ANSYS/LS\|DYNA module based on finite element method. The validity of the feasibility supplementary criterion of bulging for multiple reinforcement ribs was verified by the results of thickness thinning rate distribution and forming limit diagram. The center distance between adjacent ribs is the key factor for determining the feasibility of once bulging.

基金项目:
浙江省科技计划重点工业研究项目(2006C21052)
作者简介:
参考文献:


[1]周杰, 黄人江, 郭武俊, 等. 扇形加强筋结构对汽车后轮毂包成形质量的影响[J]. 锻压装备与制造技术, 2009, (4): 70-72.Zhou J, Huang R J, Guo W J, et al. The application of sector tendon structure to design of auto cover panel[J]. China Metal Forming Equipment & Manufacturing Technology, 2009, (4): 70-72.
[2]季学荣, 丁晓红. 板壳结构加强筋优化设计方法[J]. 机械强度, 2012, 34(5): 692-698.Ji X R, Ding X H. Design optimization method of stiffeners on plane and shell structures[J]. Journal of Mechanical Strength, 2012, 34(5): 692-698.
[3]姜奎华. 冲压工艺与模具设计[M]. 北京: 机械工业出版社, 2011.Jiang K H. Stamping Process and Die Design[M]. Beijing:China Machine Press, 2011.
[4]王孝培. 冲压手册[M]. 3版.北京: 机械工业出版社, 2012.Wang X P. The Stamping Manual[M]. 3rd Edition .Beijing: China Machine Press, 2012.
[5]翁其金, 徐新成. 冲压工艺及冲模设计[M]]. 北京: 机械工业出版社, 2008.Weng Q J, Xu X C. Stamping Process and Die Design[M]. Beijing: China Machine Press, 2008.
[6]徐祥合, 张卫刚, 李淑慧, 等. 材料性能参数对液压成形件厚度分布的影响规律研究[J]. 塑性工程学报, 2007, 14(6): 101-104.Xu X H, Zhang W G, Li S H, et al. The effects of material property parameters on the thickness distribution of hydroformed parts[J]. Journal of Plasticity Engineering, 2007, 14(6): 101-104.
[7]李伟锋, 乔明杰. 杯突试验测定板料形极限图的试验研究[J]. 锻压技术, 2010, 35(6): 63-65.Li W F, Qiao M J. Experimental study on determinating forming limit diagram of sheet metal with cupping test method[J]. Forging & Stamping Technology, 2010, 35(6): 63-65.
[8]王辉. 成形极限图的获取方法与其在金属板料成形中的应用[D]. 南京: 南京航空航天大学, 2011.Wang H. Acquisition Method of Forming Limit Diagram and Its Application in Sheet Metal Forming[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
[9]程驰, 龙士国, 马增胜, 等. 基于弧长法和减薄率判据研究金属镀层的成形极限[J]. 材料导报B, 2012, 26(5): 135-139.Cheng C, Long S G, Ma Z S, et al. Study on the forming limit of nickel plated steel strip based on arclen method and thinnimg rate criteria[J]. Materials Review B: Research, 2012, 26(5): 135-139.
[10]郑刚, 李光耀, 孙光永, 等. 基于近似模型的拉延筋几何参数反求[J]. 中国机械工程, 2006, 17(19): 1988-1992.Zheng G, Li G Y, Sun G Y, et al. Geometrical parameter inverse problem for drawbeads based on the approximate model[J]. China Mechanical Engineering, 2006, 17(19): 1988-1992.
[11]孙成智, 陈关龙, 李淑惠, 等. 变压边力对矩形成形性能的影响[J]. 塑性工程学报, 2003, 10(4): 6-9.Sun C Z, Chen G L, Li S H, et al. The effect of variable blank-holder forces on formability of rectangle box deep drawing[J]. Journal of Plasticity Engineering, 2003, 10(4): 6-9.
[12]吴勇国. 板材成形过程数值模拟研究[D]. 武汉: 华中理工大学, 1995.Wu Y G. The numerical simulation of sheet metal forming process[D]. Wuhan: Huazhong University of Science and Technology, 1995.
[13]施于庆, 楼易. 筒形件拉深孔成形工艺数值模拟分析[J]. 农业机械学报, 2008, 39(12): 191-195.Shi Y Q, Lou Y. Numerical simulation analysis on drawing\|hole forming technology to cylinder cup[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(12): 191-195.
[14]肖景容, 姜奎华. 冲压工艺学[M]. 北京: 机械工业出版社, 2011.Xiao J R, Jiang K H. Stamping Technology [M]. Beijing: China Machine Press, 2011.
[15]张晓斌, 孙宇, 代珊. 基于径向基神经网络杯形件胀形成形变压变力预测技术研究[J]. 机械设计, 2007, 24(8): 36-38.Zhang X B, Sun Y, Dai S. A study on the prediction technology of variable blank\|holding force for deep drawing forming of cup shaped parts based on radial basis neural net work[J]. Journal of Machine Design, 2007, 24(8): 36-38.
[16]陈龙, 王明伟, 李姝, 等. 汽车加强板冲压成形数值模拟及试验研究[J]. 锻压技术, 2012, 37(6): 182-186.Chen L, Wang M W, Li S, et al. Forming numerical simulation and experiment for automotive enforcement panel[J]. Forging & Stamping Technology, 2012, 37(6): 182-186.

 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9