网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻压态6063-0.3V铝合金的组织与性能
英文标题:Microstructure and properties of 6063-0.3V aluminum alloy in forging state
作者:郭正烜1 李子亮2 
单位:1.山西工程科技职业大学 建筑设计学院 2.河北科技大学 材料科学与工程学院 
关键词:6063-0.3V铝合金 显微组织 力学性能 耐磨损性能 细化晶粒 锻压处理 
分类号:TH164
出版年,卷(期):页码:2025,50(2):235-241
摘要:

采用先预压再主压的锻压流程进行了建筑用6063-0.3V铝合金的锻压试验,并与合金锻压前的显微组织、力学性能和耐磨损性能进行了对比分析。结果表明:锻压处理细化了6063-0.3V铝合金的内部晶粒,提升了其力学性能和耐磨损性能。在始锻温度为470 ℃、终锻温度为360 ℃、预压阶段变形量为2%、主压阶段变形量为10%、锻压速度为50 mm·min-1和模具预热温度为280 ℃的锻压工艺参数下,获得了组织细小均匀、力学性能和耐磨损性能均较佳的锻压态建筑用6063-0.3V铝合金,其平均晶粒尺寸为14 μm、抗拉强度为278 MPa、屈服强度为234 MPa、断后伸长率为9.2%、磨损30 min后磨损体积仅为18.4×10-3 mm3。研究表明锻压处理是建筑用6063-0.3V铝合金获得较佳综合性能的有效途径。

The forging test of 6063-0.3V aluminum alloy for construction was carried out by using a forging process of pre-pressing first and then main pressing, and a comparative analysis was carried out on the microstructure, mechanical properties and wear resistance of the alloy before forging. The results show that the forging treatment refines the internal grains of 6063-0.3V aluminum alloy and improves its mechanical and wear resistance properties. Under the forging process parameters of the initial forging temperature of 470 ℃, the final forging temperature of 360 ℃, the deformation amount in the pre-pressing stage of 2%, the deformation amount in the main pressing stage of 10%, the forging speed of 50 mm·min-1 and the die pre-heating temperature of 280 ℃, a 6063-0.3V aluminum alloy for construction in forging state with fine and uniform microstructure, good mechanical properties and wear resistance is obtained. Its average grain size is 14 μm, tensile strength is 278 MPa, yield strength is 234 MPa, elongation at break is 9.2% and the wear volume after 30 minutes of wear is only 18.4×10-3 mm3. The research indicates that the forging treatment is an effective way to obtain 6063-0.3V aluminum alloy for construction with better comprehensive performance.

基金项目:
国家自然科学基金资助项目(52078086)
作者简介:
作者简介:郭正烜(1981-),男,硕士,讲师 ,E-mail:sxjygzx@126.com
参考文献:

[1]汤捷,谢航,吕强,等.基于生命周期的轻型商用货车轻量化碳排放研究[J].汽车工程学报,2024,14(3):502-510.


 

Tang J, Xie H, Lyu Q, et al. Life cycle-based carbon emission study of lightweighting in light commercial trucks [J]. Chinese Journal of Automotive Engineering, 2024,14 (3): 502-510.

 

[2]Xiao J,Cao J G,Song C N,et al. The collapse deformation prediction model of wide 7075 aluminum alloy intermediate slab based on particle swarm optimization and support vector regression during hot rolling process[J]. Journal of Materials Engineering and Performance,2024,33(2):1034-1050.

 

[3]顾文秀,周细应,彭以辉,等.Al-Sr-La中间合金改性对A356铝合金组织和性能的影响[J].材料热处理学报,2024,45(5):70-80.

 

Gu W X, Zhou X Y, Peng Y H, et al. Effect of Al-Sr-La intermediate alloy modification on microstructure and properties of A356 aluminum alloy [J]. Transactions of Materials and Heat Treatment, 2024,45 (5): 70-80.

 

[4]宫子琪,郑理银.含Sc超高强度铝合金成分优化及组织性能研究[J/OL].有色金属科学与工程,1-11[2024-05-15].http://kns.cnki.net/kcms/detail/36.1311.tf.20240513.1711. 002.html.

 

Gong Z Q, Zheng L Y. Study on the optimization of scandium super high-strength aluminum alloy composition and microstructure properties [J/OL]. Nonferrous Metals Science and Engineering,1-11[2024-05-15].http://kns.cnki.net/kcms/detail/36.1311.tf.20240513.1711.002.html.

 

[5]田贺鑫,马冬梅,艾子清,等.旋转挤压工艺对耐热铝合金组织及性能的影响[J].辽宁工业大学学报(自然科学版),2024,44(2):71-74.

 

Tian H X, Ma D M, Ai Z Q, et al. Effect of rotary extrusion process on microstructure and properties of heat-resistant aluminum alloy [J]. Journal of Liaoning University of Technology (Natural Science Edition), 2024,44 (2): 71-74.

 

[6]高珊珊,李刚,都志强. 公路建筑用铝合金表面激光熔覆FeCoNiCr高熵合金涂层的组织与抗腐蚀性[J]. 铸造,2022,71(7):839-844. 

 

Gao S S, Li G,Du Z Q. Microstructure and corrosion resistance of laser-cladded FeCoNiCr high-entropy alloy coating on aluminum alloys for highway architecture applications[J]. Foundry, 2022, 71 (7): 839-844.

 

[7]孙庆武. 建筑用对接铝合金薄板应力模拟及焊接变形机理研究[J]. 太原学院学报(自然科学版),2022,40(4):12-16.

 

Sun Q W. Research on stress simulation and welding deformation mechanism of butt-joined aluminum alloy sheets for construction [J]. Journal of Taiyuan University (Natural Science Edition), 2022, 40 (4): 12-16.

 

[8]张荣晟,毛卫民,李乃拥.半固态改性6061铝合金流变压铸试样组织及力学性能[J].特种铸造及有色合金,2024,44(4):516-520.

 

Zhang R S, Mao W M, Li N Y. Microstructure and mechanical properties of semi-solid modified 6061 aluminum alloy samples by rheo-diecasting [J]. Special Casting & Nonferrous Alloys, 2024,44 (4): 516-520.

 

[9]闫莹洁,吴名冬,肖代红,等.Fe含量对7075铝合金的显微组织与性能影响[J].特种铸造及有色合金,2024,44(4):551-558.

 

Yan Y J, Wu M D, Xiao D H, et al. Effects of Fe content on microstructure and properties of 7075 aluminum alloy [J]. Special Casting & Nonferrous Alloys, 2024,44 (4): 551-558.

 

[10]刘萌,李新亚,臧勇,等.固溶成形工艺对6016铝合金组织及力学性能的影响[J].金属热处理,2023,48(2):138-143.

 

Liu M, Li X Y, Zang Y, et al. Effect of solution forming process on microstructure and mechanical properties of 6016 aluminum alloy [J]. Heat Treatment of Metals, 2023,48 (2): 138-143.

 

[11]杨宁源,周慧慧,张志豪.Fe含量对Al-1.04wt.%Mg-0.64wt.%Si-0.23wt.%Cu合金析出相、力学性能和腐蚀性能的影响[J].材料科学与工艺,2021,29(3):64-74.

 

Yang N Y, Zhou H H, Zhang Z H. Effect of Fe content on precipitation phase, mechanical properties, and corrosion properties of Al-1.04wt.%Mg-0.64wt.%Si-0.23wt.%Cu alloy [J]. Materials Science and Technology, 2021, 29 (3): 64-74.

 

[12]田少鲲,李静媛,张俊龙,等.Sc对7056铝合金组织和性能的影响[J].工程科学学报,2019,41(10):1298-1306.

 

Tian S K, Li J Y, Zhang J L, et al. Effect of Sc on the microstructure and properties of 7056 aluminum alloy [J]. Chinese Journal of Engineering, 2019,41 (10): 1298-1306.

 

[13]杜智渊,吴茂,邱婷婷,等.Al-Cu-Mg-Si系铝合金的注射成形[J].中国有色金属学报,2019,29(11):2471-2480.

 

Du Z Y, Wu M, Qiu T T, et al. Metal injection molding of Al-Cu-Mg-Si alloy [J]. The Chinese Journal of Nonferrous Metals, 2019,29 (11): 2471-2480.

 

[14]陈正周,宋朝辉,罗文博.热处理对流变压铸铝合金力学性能和显微组织的影响[J].中国有色金属学报,2018,28(3):518-527.

 

Chen Z Z, Song C H, Luo W B. Effect of heat treatment on mechanical properties and microstructure of rheo-diecasting aluminum alloy [J].The Chinese Journal of Nonferrous Metals, 2018,28 (3): 518-527.

 

[15]郭正烜,李子亮. 锻压条件对高强建筑Al-11.5Si-2Cu-0.5Fe铝合金显微组织的影响[J]. 锻压技术,2024,49(5):13-16,83. 

 

Guo Z X, Li Z L.Influence of forging conditions on microstructure of high strength building Al-11.5Si-2Cu-0.5Fe aluminum alloy[J]. Forging & Stamping Technology,2024,49(5):13-16,83.

 

[16]李旻昊,卢立伟,张家龙,等. 镁合金锻压-弯曲反复变形的有限元数值模拟分析与实验研究[J]. 锻压技术,2023,48(2):52-61. 

 

Li M H, Lu L W, Zhang J L, et al. Finite element numerical simulation analysis and experimental research on forging-bending repeated deformation for magnesium alloys[J]. Forging & Stamping Technology,2023,48(2):52-61. 

 

[17]肖振宇,杨溢,袁星宇,等. 分步锻压工艺对AZ91镁合金组织演化及力学性能的影响[J]. 中国有色金属学报,2018,28(11):2173-2181. 

 

Xiao Z Y, Yang Y, Yuan X Y, et al. Effects of interrupted forging on microstructural development and mechanical properties of cast AZ91 Mg alloy [J]. The Chinese Journal of Nonferrous Metals, 2018,28 (11): 2173-2181.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9