网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
液压缸法兰区过渡形线优化
英文标题:Optimization on transition line in flange area of hydraulic cylinder
作者:夏卫明1 滕小磊2 王冬仙1 冷云龙1 
单位:1.江苏扬力液压装备有限公司 2.扬州大学 机械工程学院 
关键词:液压缸 法兰 过渡形线 最大等效应力 应力集中 
分类号:TH123+3
出版年,卷(期):页码:2025,50(2):204-215
摘要:

液压缸法兰过渡区多采用圆角与缸筒支承面光滑连接,在圆角与直边段连接处容易产生强烈的应力集中现象,进而产生疲劳裂纹甚至使法兰局部脱落,造成巨大的经济损失。针对此问题,对某公称力为6000 kN的液压缸设计了圆角、斜线加圆角、凹入形线加圆角和双指数“超椭圆”参数方程4种过渡形线并进行优化设计。根据液压缸形状和边界轴对称特点,使用平面轴对称模型建立了有限元模型,通过ANSYS内嵌的优化设计模块对4种过渡形线所描述的设计变量进行了优化计算,以法兰区最大等效应力最小化为优化目标,得到4种过渡形线的设计参数,只有双指数“超椭圆”参数方程优化的结果较原始结构差,其余3种过渡形线均能有效降低液压缸法兰区的应力集中,可推荐工程应用。

The flange transition zone of hydraulic cylinder often uses rounded corner to smoothly connect with the supporting surface of cylinder, and it is easy to produce strong stress concentration at the connection between rounded corner and straight sections, leading to produce fatigue cracks and even partial detachment of the flange, resulting in huge economic losses. Therefore, according to this issue, four transition lines were optimized for a hydraulic cylinder with a nominal force of 6000 kN, including rounded corners, oblique lines with rounded corners, concave lines with rounded corners, double exponential “hyper-ellipse” parametric equations. Then, based on the shape and boundary axis-symmetric characteristics of the hydraulic cylinder, the finite element model was established by using a planar axis symmetric model, and the design variables described by the four transition lines were optimized and calculated by the optimization design module embedded in ANSYS. Furthermore, taking the minimization of the maximum equivalent stress in the flange area as the optimization objective, the design parameters of the four transition lines were obtained. Only the optimization results of the double exponential “hyper-ellipse” parametric equation were worse than the original structure, and the other three transition lines effectively reduced the stress concentration in the flange area of the hydraulic cylinder, which was recommended for engineering applications. 

基金项目:
作者简介:
作者简介:夏卫明(1981-),男,硕士,高级工程师,E-mail:xiaweiming2000@aliyun.com
参考文献:

[1]夏卫明,马立强,乔礼惠.120 MN超大台面玻璃钢液压机的研制[J].锻压装备与制造技术,2023,58(4):25-30.


 

Xia W M, Ma L Q, Qiao L H. Development of 120 MN fiberglass hydraulic press[J]. China Metalforming Equipment & Manufacturing Technology, 2023,58(4):25-30.

 

[2]乔礼惠,刘宁书,许晶晶.一种万吨级复合材料热成形伺服油压机控制系统[J].锻压装备与制造技术,2023,58(2):53-57.

 

Qiao L H, Liu N S, Xu J J. A control system for a 10000-ton composite material hot forming servo hydraulic press[J]. China Metalforming Equipment & Manufacturing Technology, 2023,58(2):53-57.

 

[3]李响,魏厚先,陈永清,等.400 t金属打包机液压缸数值分析与优化设计[J].机械,2020,47(3):7-13.

 

Li X, Wei H X,Chen Y Q,et al. Numerical analysis and optimization design of hydraulic cylinder of 400 t metal baler[J]. Machinery, 2020,47(3):7-13.

 

[4]李阁强,袁畅,王帅,等. 基于协同进化多目标遗传算法的复式液压摆动缸结构设计[J]. 船舶力学,2022,26(11):1694-1704. 

 

Li G Q, Yuan C, Wang S, et al. Structural design of compound hydraulic swing cylinder based on co-evolution multi-objective genetic algorithm [J].Journal of Ship Mechanics,2022,26(11):1694-1704. 

 

[5]杨晓俊,夏卫明. 等剪应力钢丝缠绕缸筒的有限元模拟与应用 [J]. 锻压技术, 2020, 45 (9): 201-211. 

 

Yang X J, Xia W M.Finite element simulation and application on steel wire wound cylinder with equal-shear stress [J]. Forging & Stamping Technology, 2020, 45 (9): 201-211. 

 

[6]王义平,夏卫明,骆桂林,等.液压缸法兰区过渡形线设计[J].机床与液压,2011,39(24):57-60.

 

Wang Y P, Xia W M, Luo G L, et al. Design of transitional line of hydraulic cylinder flange [J]. Machine Tool & Hydraulics, 2011,39(24):57-60.

 

[7]俞新陆.液压机的设计与应用[M].北京:机械工业出版社,2007.

 

Yu X L. Design and Application of Hydraulic Press [M]. Beijing:China Machine Press,2007.

 

[8]张利平.液压缸缸筒的模糊优化设计[J].河北工业科技,1990(4):38-44.

 

Zhang L P. Fuzzy optimum design on the barrel of hydraulic cylinders[J]. Hebei Journal of Industrial Science and Technology, 1990(4):38-44.

 

[9]刘大伟,焦国太.压力机主梁的模糊优化设计[J].现代制造工程,2010(5):127-129.

 

Liu D W, Jiao G T. Fuzzy optimal design of main girder of pressing machine[J]. Modern Manufacturing Engineering, 2010(5):127-129.

 

[10]陈罗,梁基照.复合形法在法兰支承液压缸优化设计中的应用[J].机械设计与制造,2010(3):82-84.

 

Chen L, Liang J Z. Application of complex method in optimal design of hydraulic cylinder supported with flange[J]. Machinery Design & Manufacture, 2010(3):82-84.

 

[11]Wu Z X. An efficient approach for shape optimization of components [J]. International Journal of Mechanical Sciences, 2005, 47(10):1595-1610.

 

[12]王春辉,赵升吨,谢嘉.大型快锻液压机法兰支撑液压缸优化设计及参数敏感性分析[J].锻压装备与制造技术,2009,44(2):42-46.

 

Wang C H, Zhao S D, Xie J. Optimum design and parameter sensitivity analysis of flange supported hydraulic cylinder in large high speed forging hydraulic press[J]. China Metalforming Equipment & Manufacturing Technology, 2009,44(2):42-46.

 

[13]帅长红.液压机设计、制造新工艺新技术及质量检验标准规范实务全书[M].北京:北方工业出版社,2000.

 

Shuai C H. New Technology of Hydraulic Design, Manufacturing Technology and Quality Inspection Standard Practice Encyclopedia[M]. Beijing: The Northern Industrial Publishing House, 2000.

 

[14]天津市锻压机床厂.中小型液压机设计计算[M].天津:天津人民出版社,1977.

 

Tianjin Forging Machine Tool Factory. Design and Calculation of Small and Middle Hydraulic Press [M]. Tianjin: Tianjin People′s Publishing House,1977.

 

[15]夏卫明,骆桂林,嵇宽斌.ANSYS优化算法的研究及其在液压机优化设计中的应用[J].锻压装备与制造技术,2010,45(1):43-47.

 

Xia W M, Luo G L, Ji K B. The study on ANSYS optimized arithmetic and its application in optimized design of hydraulic press[J]. China Metalforming Equipment & Manufacturing Technology, 2010,45(1):43-47.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9