网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于改进Lemaitre损伤模型的圆锥滚子孔型斜轧过程损伤预测
英文标题:Damage prediction on helical rolling for tapered roller based on the modified Lemaitre damage model
作者:马明辉 钱东升 曹强 邓加东 
单位:武汉理工大学 现代汽车零部件技术湖北省重点实验室 
关键词:圆锥滚子 孔型斜轧 Lemaitre损伤模型 损伤预测 有限元模拟 
分类号:TG335.19
出版年,卷(期):页码:2017,42(4):123-130
摘要:

根据圆锥滚子热斜轧成形过程中的特点以及轧件的受力状态分析,改进了传统的Lemaitre损伤模型,充分考虑了正、负静水压应力状态下损伤演化的差异性,以及应变速率和变形温度变化对损伤演化的影响。将改进的Lemaitre损伤模型借助SIMUFACT平台的二次开发技术嵌入到圆锥滚子孔型斜轧有限元模型中,创建了圆锥滚子孔型斜轧的损伤预测模型。同时,采用同样的建模技术建立了轴承钢球孔型斜轧损伤预测模型,并与文献中的实验结果对比,验证了改进的Lemaitre损伤模型的可靠性。圆锥滚子孔型斜轧损伤预测模型的模拟结果表明,圆锥滚子热斜轧过程中损伤程度较大的区域主要为连接颈轴心及靠近连接颈轴心的区域,而且滚子小端心部损伤程度明显大于滚子大端。

According to the characteristics of tapered roller in the helical rolling process and the analysis of stress state, a traditional Lemaitre damage model was improved by considering the difference of damage growth under positive and negative hydrostatic pressure stress state and the influences of strain rate and deformation temperature on damage growth. Then, the modified model was implemented in the FE model of helical rolling for tapered roller by the secondary development technology of SIMUFACT, and the damage prediction model of helical rolling for tapered roller was established. At the same time, the damage prediction model of helical rolling for bearing steel ball was also set up by the above technology, and the experimental results were compared with literatures to verify the reliability of modified Lemaitre damage model. The simulation results show that the large damage zones are located in the axial centre of connecting neck and near the axial centre of connecting neck in the helical rolling process of tapered roller, and the central damage in small end of tapered roller is larger than that in big end.
 

基金项目:
教育部创新团队发展计划项目(IRT13087);湖北省高端人才引领计划项目(2012-86); 湖北省重大科技创新计划项目(2015AAA005)
作者简介:
马明辉(1990-), 男,硕士研究生 E-mail:993119897@qq.com 通讯作者:钱东升 (1982-),男,博士,副教授 E-mail:qiands@whut.edu.cn
参考文献:

[1]胡正寰, 华林. 零件轧制成形技术[M]. 北京: 化学工业出版社, 2010.


Hu Z H, Hua L. Technology of Rotary Metal Forming [M]. Beijing: Chemical Industry Press, 2010.


[2]Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials & Technology, 1985, 107:83-89.


[3]Lee S W, Pourboghrat F. Finite element simulation of the punchless piercing process with Lemaitre damage model[J]. International Journal of Mechanical Sciences, 2005, 47(11):1756-1768.


[4]于忠奇, 杨玉英, 王永志,. 基于韧性断裂准则的铝合金板材成形极限预测[J]. 中国有色金属学报, 2003, 13(5): 1223-1226.


Yu Z Q, Yang Y Y, Wang Y Z, et al. Application of ductile fracture criterion to prediction of forming limit in aluminum alloy sheet forming[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(5):1223-1226.


[5]吴卷, 詹梅, 蒋华兵,. 一种改进的Lemaitre韧性断裂准则及其在旋压成形中的应用[J]. 航空学报, 2011, 32(7): 1309-1317.


Wu J, Zhan M, Jiang H B, et al. A modified lemaitre ductile fracture criterion and its application to spinning forming[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1309-1317.


[6]曾嵘, 黄亮, 李建军,. 一种改进的损伤断裂准则及其在板料成形中的应用[J]. 锻压技术, 2015, 40(8):13-20.


Zeng R, Huang L, Li J J, et al. An improved damage fracture criterion and its application in sheet metal forming[J]. Forging Stamping Technology, 2015, 40(8):13-20.


[7]Ghiotti A, Fanini S, Bruschi S, et al. Modelling of the Mannesmann effect[J]. CIRP Annals - Manufacturing Technology, 2009, 58(1):255-258.


[8]Cao Q, Hua L, Qian D S. Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls[J]. Journal of Central South University, 2015, 22(4): 1175-1183.


[9]Cockcroft M G, Latham D J. Ductility and the workability of metals[J]. Journal of the Institute of Metals, 1968, 96(1): 33-39.


[10]曹强,华林,钱东升. 轴承钢球毛坯热斜轧成形过程数值模拟[J]. 轴承, 2015, (1):16-21.


Cao Q, Hua L, Qian D S. Numerical simulation on hot helical rolling forming process of blank for bearing steel balls[J]. Bearing, 2015, (1): 16-21.


[11]曹强. 球轴承滚动体螺旋孔型斜轧宏微观变形与损伤行为研究[D]. 武汉: 武汉理工大学,2015.


Cao Q. Research on Macroscopic and Microscopic Deformation and Damage Behaviors in Helical Rolling Forming of the Ball Bearings Rolling Elements [D]. Wuhan: Wuhan University of Technology, 2015.


[12]付明杰, 张涛, 韩秀全, . TNW700 高温钛合金板材超塑变形行为研究[J]. 稀有金属, 2016, 40(1): 1-7.


Fu M J, Zhang T, Han X Q, et al. Superplastic deformation behavior of TNW700 titanium alloy sheet[J]. Chinese Journal of Rare Metals, 2016, 40(1): 1-7.


[13]Qian D S, Pan Y. 3D coupled macro-microscopic finite element modelling and simulation for combined blank-forging and rolling process of alloy steel large ring[J]. Computational Materials Science, 2013, 70: 24-36.


[14]Pater Z, Tomczak J, Bartnicki J, et al. Experimental and numerical analysis of helical-wedge rolling process for producing steel balls[J]. International Journal of Machine Tools and Manufacture, 2013, 67:1-7.


[15]Pater Z, Kazanecki J. Complex numerical analysis of the tube forming process using Diescher mill[J]. Archives of Metallurgy and Materials, 2013, 58(3): 717-724.


[16]Yin F, Hua L, Mao H J, et al. Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments[J]. Materials & Design, 2013, 43: 393-401.


[17]胡正寰, 许协和, 沙德元. 斜轧与楔横轧——原理、工艺及设备[M]. 北京: 冶金工业出版社, 1985.


Hu Z H, Xu X H, Sha D Y. Skew Rolling and Crosswedge Rolling-Principles, Processes and Machines [M]. Beijing: Metallurgy Industry Press, 1985.


 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9