网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
响应面法在发动机隔热罩冲压成形工艺参数优化中的应用
英文标题:Application of response surface method to optimize process parameters in engine heat shield forming
作者:覃柏英 秦文东 林贤坤  汤淑芳 
单位:广西科技大学 
关键词:隔热罩 冲压成形 减薄率 起皱率 Box-Benhnken设计 响应面法 
分类号:TG386.41
出版年,卷(期):页码:2016,41(3):22-28
摘要:

借助Dynaform软件,通过与实验结果对比,较准确地建立了某公司生产的发动机隔热罩冲压成形仿真模型。在此模型基础上,采用BBD设计安排实验,以冲压工艺参数为自变量,最大减薄率和起皱率为因变量,分别建立了工艺参数与最大减薄率和起皱率的二次多项式响应面模型,并对两个模型进行优化。以最大减薄率未优化响应面模型为约束,起皱率未优化响应面模型为目标函数,以及最大减薄率优化响应面模型为约束,起皱率优化响应面模型为目标函数,分别对工艺参数进行优化。结果显示,优化后的隔热罩仿真模型最大减薄率和起皱率控制在较好范围,且优化响应面模型的结果更优。

Compared with the experimental results, the accurate simulation model of forming an engine heat shield was established by Dynaform. Based on the model, the experiments were arranged by Box-Benhnken design. Furthermore, the process parameters were chosen as independent variables with the wrinkling rate and the maximum thinning rate defined as response values. The two order polynomial response surface models of the process parameters with the maximum wrinkling rate and with the maximum thinning rate were established respectively and were optimized by Design-Expert. Then, the maximum thinning rate without optimizing the response surface model was taken as the constraint condition and the rate of response surface without optimizing the wrinkling model was defined as objective function. After that, the maximum thinning rate optimizing response surface model was taken as the constraint condition and the rate of response surface optimizing wrinkling model was defined as objective function. Parameters of the above two situations were optimized respectively. Finally, the maximum thinning rate and wrinkling rate could be controlled in a certain range by the heat shield model optimized process parameters, and the results of optimized response surface model are better.

基金项目:
广西自然科学基金资助项目(2012GXNSFAA053208);广西柳州市科学研究与技术开发计划项目(2013G010601);广西区教育厅立项项目(LX2014197);广西科技大学科学基金资助项目(校科自1307120)
作者简介:
覃柏英(1979-),女,硕士,讲师 通讯作者:秦文东(1982-),男,硕士,助理研究员
参考文献:


[1]余世浩, 赵锐敏, 李佳琪. 基于多目标粒子群算法的冲压成形工艺优化[J]. 热加工工艺, 2014, 43(1): 144-147.Yu S H,Zhao R M,Li J Q. Process Optimization of Sheet Metal Stamping Based on Multi-objective Particle Swarm Algorithm[J]. Hot Working Technology,2014, 43(1): 144-147.
[2]孟艳敏, 刘劲松. 优化法在材料成形工艺参数优化中的应用[J]. 机械工程与自动化, 2014,185(4): 109-110. Meng Y M,Liu J S. Applications of optimization methods in optimization of material forming parameters[J]. Mechanical Engineering & Automation,2014, 185(4): 109-110.
[3]Li H, Chen J, Xiao Y. Multi-objective optimization for laminated steel sheet forming process based on desirability function approach and reliability analysis[J]. Engineering Computations, 2013, 30(8): 1107-1127.
[4]朱梅云, 傅建, 崔礼春. G系列叉车发动机机罩冲压成形工艺参数优化[J]. 锻压技术, 2014, 39(9):27-30.Zhu M Y,Fu J,Cui L C. Optimization of stamping parameters for G series forklift engine hood[J]. Forging & Stamping Technology, 2014, 39(9):27-30.
[5]杜勇, 闻瑶, 马俊林, 等. 隔热板冲压成形工艺参数优化[J]. 精密成形工程, 2014, 6(5):108-112.Du Y,Wen Y,Ma J L,et al. Optimization of the process parameters for thermal baffle stamping forming[J]. Journal of Netshape Forming Engineering,2014, 6(5):108-112.
[6]Meng F, Labergere C, Lafon P, et al. Multi-objective optimization based on meta-models of an aeronautical hub including the ductile damage constraint[J]. International Journal of Damage Mechanics, 2014, 23(8): 1055-1076.
[7]吴召齐, 李细锋, 陈军, 等. 基于多宽度高斯核函数模型的十字形件冲压成形工艺参数优化[J]. 塑性工程学报, 2013, 20(1): 58-62.Wu Z Q,Li X F,Chen J,et al. Research on parameter optimization of cross-part deep-drawing based on Gaussian kernel function with multi-width[J]. Journal of Plasticity Engineering,2013, 20(1): 58-62.
[8]卿启湘, 陈哲吾, 刘杰, 等. 基于Kriging插值和回归响应面法的冲压成形参数的优化及对比分析[J]. 中国机械工程, 2013, 24(11): 1447-1452.Qing Q X,Chen Z W,Liu J,et al. Study on comparison and optimization of sheet forming parameters using Kriging interpolation and regression response surface metamodeling techniques[J]. China Mechanical Engineering,2013, 24(11): 1447-1452.
[9]安治国, 周杰, 赵军, 等. 基于径向基函数响应面法的板料成形仿真研究[J]. 系统仿真学报, 2009, 21(6):1557-1561.An Z G,Zhou J,Zhao J,et al. Simulation research for sheet metal forming process based on response surface methodology of radius basis function[J]. Journal of System Simulation,2009, 21(6):1557-1561.
[10]Box G E P, Wilson K B. On the experimental attainment of optimum conditions[J]. Journal of Royal Statistical Society, Series B (Methodologyological), 1951,13(1): 1-45.
[11]王永菲, 王成国. 响应面法的理论与应用[J]. 中央民族大学学报:自然科学版, 2005, 14(3): 236-240.Wang Y F,Wang C G. The application of response surface methodology[J].Journal of the Central University for Nationalities:Natural Sciences Edtion,2005, 14(3): 236-240.
[12]程驰, 龙士国, 马增胜. 基于弧长法和减薄率判据研究金属镀层的成形极限[J]. 材料导报, 2012,26(10): 135-139.Cheng C,Long S G,Ma Z S. Study on the forming limit of nickel plated steel strip based on arclen method and thinning rate criteria[J].Materials Review,2012,26(10): 135-139.
[13]覃柏英, 汤淑芳, 林贤坤, 等. 发动机隔热罩冲压成形的工艺参数优化[J]. 锻压技术, 2015,40(9): 27-32.Qin B Y, Tang S F, Lin X K, et al. Optimization of process parameters in engine heat shield forming[J]. Forging & Stamping Technology, 2015,40(9):27-32.
[14]覃柏英,秦文东,林贤坤,等. 基于BBD设计和响应面法的隔热罩冲压成形工艺参数优化[J]. 制造业自动化, 2015, 37(8): 57-60.Qin B Y, Qin W D, Lin X K, et al. Optimization of process parameters in heat shield forming based on BBD design and response surface method[J]. Manufacturing  Automation, 2015, 37(8): 57-60.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9